CS 5633 Analysis of Algorithms — Spring 04
3/24/04

8. Homework
Due 3/31/04 before class

. LCS reconstruction (3 points)
Can you reconstruct an LCS from the filled dynamic programming table without
using the “arrows”, in O(n + m) time? Justify your answer.

. Saving space (5 points)

Suppose we only want to compute the length of an LCS of two strings of length
m and n. Show how to alter the dynamic programming algorithm such that it
only needs min(m,n) + O(1) space. (Notice that it is not O(min(m,n)), but plain
min(m, n).)

. Saving space — again? (3 points)

Suppose we only want to compute the minimum number of scalar multiplications
to multiply a chain of n matrices. Can we save space in a similar manner to
problem 2 7 If yes argue how we can save space, and how much. If not, argue why.

. Don’t be greedy (3 points)
Consider the following greedy approach to solve the matrix chain multiplication

problem for Ay -...- A, with the sequence of matrix dimensions pg, p1,...,pn: Let
k* be that value of k£ that minimizes pypg,p, for all 1 < k < n. Split the matrix
chain at index k*, i.e., parenthesize as follows: (Ay ... Ag<) - (Ag=q1 ...+ 4p).

The two subproblems are being solved recursively in a similar way.

Give an example matrix chain (i.e., a sequence of dimensions is enough), which
shows that this greedy approach does not yield an optimal parenthesization.

. Binomial coefficient (8 points)
Given n and k£ with n > k£ > 0, we want to compute the binomial coefficient (2)
However, we are only allowed to use additions, and no multiplications.

a) (3 points) Give a bottom-up dynamic programming algorithm to compute
(}) using the recurrence

n n—1 n—1
<k> = (k—1>+(i >,f0rn>k>0
(n) = (n) =1, forn>0

0 n

b) (1 point) How fast does your algorithm run, expressed in n and k7
¢) (1 point) What is the minimum amount of space you need?

d) (1 point) What mathematical “entity” does your dynamic programming
table store?

e) (2 point) Now assume you use memoization to compute (;1) using the
above recurrence. In which order do you fill the entries in the DP-table?
Give the DP-table for this case and annotate each cell with a “time stamp”
when it was filled.

FLIP OVER TO BACK PAGE —>

6. Change (8 points)
Vending machines need to be able to give change, preferrably by breaking the
owed amount into the minimum number of coins. Since vending machines exist
all over the world, we don’t want to be restricted to cents, nickels, dimes, and
quarters, but we want to be able to perform this task for all kinds of different
coin denominations.

Let dy,...,d; be the given coin denominations, assume d; always equals 1, and
let n be the amount to break into change. Assume you have an inifinite amount
of coins for every denomination. The task is to find the minimum number of
coins whose values sum up to n.

Example: Assume we have n = 8 cents, and we have 1-cent coins, 4-cent coins,
and 5-cent coins, so k = 3 and d; = 1,dy = 4,ds = 5. The best way to make
change for 8 cents is to use two 4-cent coins.

Devise a dynamic programming algorithm to solve the task. Proceed in the
following steps:
a) Come up with a recurrence relation for the minimum number of coins
needed.
b) Use dynamic programming to compute this number.

c) Finally, extract an actual optimal set of coins from the DP-table.

What is the runtime of your algorithm, expressed in n and k7

