CS 3343 -- Spring 2009 #### P and NP #### Carola Wenk Slides courtesy of Piotr Indyk with small changes by Carola Wenk 4/21/09 CS 3343 Analysis of Algorithms Have seen so far - Algorithms for various problems - Running times $O(nm^2)$, $O(n^2)$, $O(n \log n)$, O(n), etc. - I.e., polynomial in the input size - Can we solve all (or most of) interesting problems in polynomial time? - Not really... 4/21/09 CS 3343 Analysis of Algorithms # **Example difficult problem** - Traveling Salesperson Problem (TSP) - Input: Undirected graph with lengths on edges - Output: Shortest tour that visits each vertex exactly once - Best known algorithm: $O(n \ 2^n)$ time. 3 CS 3343 Analysis of Algorithms **Another difficult problem** - Clique: - Input: Undirected graph G=(V,E) - Output: Largest subset C of V such that every pair of vertices in C has an edge between them (C is called a clique) - Best known algorithm: $O(n \ 2^n)$ time 4/21/09 CS 3343 Analysis of Algorithms 4/21/09 #### What can we do? - Spend more time designing algorithms for those problems - People tried for a few decades, no luck - Prove there is no polynomial time algorithm for those problems - Would be great - Seems *really* difficult - Best lower bounds for "natural" problems: - $\Omega(n^2)$ for restricted computational models - 4.5*n* for unrestricted computational models 4/21/09 CS 3343 Analysis of Algorithms 5 #### What else can we do? - Show that those hard problems are **essentially equivalent**. I.e., if we can solve one of them in polynomial time, then all others can be solved in polynomial time as well. - Works for at least 10 000 hard problems 4/21/09 CS 3343 Analysis of Algorithms #### The benefits of equivalence - Combines research efforts - If one problem has polynomial time solution, then all of them do - More realistically: Once an exponential lower bound is shown for one problem, it holds for all of them 7 #### **Summing up** - If we show that a problem ∏ is equivalent to ten thousand other well studied problems without efficient algorithms, then we get a very strong evidence that ∏ is hard. - We need to: - Identify the class of problems of interest - Define the notion of equivalence - Prove the equivalence(s) CS 3343 Analysis of Algorithms 4/21/09 CS 3343 Analysis of Algorithms 8 4/21/09 ## Class of problems: NP - Decision problems: answer YES or NO. E.g.,"is there a tour of length ≤ K"? - Solvable in *non-deterministic polynomial* time: - Intuitively: the solution can be verified in polynomial time - E.g., if someone gives us a tour T, we can verify in *polynomial* time if T is a tour of length ≤ K. 9 11 • Therefore, the decision variant of TSP is in NP. 4/21/09 CS 3343 Analysis of Algorithms # Decision problem vs. optimization problem (cont.) #### Theorem: - a) If 1. can be solved in polynomial time, then 2. can be solved in polynomial time. - b) If 2. can be solved in polynomial time, then 3. can be solved in polynomial time. #### **Proof:** - a) Run 1. for values *k*=1..*n*. Instead of linear search one could also do binary search. - b) Run 2. to find the size $k_{\rm opt}$ of a largest clique in G. Now check one edge after the other. Remove one edge from G, compute the new size of the largest clique in this new graph. If it is still $k_{\rm opt}$ then this edge is not necessary for a clique. If it is less than $k_{\rm opt}$ then it is part of the clique. CS 3343 Analysis of Algorithms Decision problem vs. optimization problem #### 3 variants of Clique: - 1. Input: Undirected graph G=(V,E), and an integer $k \ge 0$. Output: Does G contain a clique of C such that $|C| \ge k$? - Input: Undirected graph G=(V,E) Output: Largest integer k such that G contains a clique C with |C|=k. - 3. Input: Undirected graph G=(V,E)Output: Largest clique C of V. - 3. is harder than 2. is harder than 1. So, if we reason about the decision problem (1.), and can show that it is hard, then the others are hard as well. Also, every algorithm for 3. can solve 2. and 1. as well. 4/21/09 CS 3343 Analysis of Algorithms #### Formal definitions of P and NP 10 • A decision problem \prod is solvable in polynomial time (or $\prod \in P$), if there is a polynomial time algorithm A(.) such that for any input x: $$\prod(x)$$ =YES iff $A(x)$ =YES A decision problem is solvable in non deterministic polynomial time (or ∏∈NP), if there is a polynomial time algorithm A(.,.) such that for any input x: $$\prod(x)$$ =YES iff there exists a certificate y of size poly($|x|$) such that $A(x,y)$ =YES 4/21/09 CS 3343 Analysis of Algorithms 12 4/21/09 #### **Examples of problems in NP** Is "Does there exist a clique in G of size ≥K" in NP? Yes: A(x,y) interprets x as a graph G, y as a set C, and checks if all vertices in C are adjacent and if $|C| \ge K$ • Is Sorting in NP? No, not a decision problem. • Is "Sortedness" in NP? Yes: ignore y, and check if the input x is sorted. 4/21/09 CS 3343 Analysis of Algorithms ## Clique again - Clique (decision variant): - **Input:** Undirected graph G=(V,E), and an integer $K\ge 0$ - Output: Is there a clique C, i.e., a subset C of V such that every pair of vertices in C has an edge between them, such that $|C| \ge K$? 4/21/09 CS 3343 Analysis of Algorithms 17 19 ## **Independent set (IS)** - **Input:** Undirected graph G=(V,E), and an integer $K\geq 0$ - Output: Is there a subset S of V, $|S| \ge K$ such that no pair of vertices in S has an edge between them? (S is called an *independent set*) 18 4/21/09 CS 3343 Analysis of Algorithms **Clique ≤ IS** X • Given an input G=(V,E), K to Clique, need to construct an input G'=(V',E'), K' to IS, $$f(x')=x$$ such that G has clique of size $\geq K$ iff G' has IS of size $\geq K$ '. - Construction: $K'=K, V'=V, E'=\overline{E}$ - Reason: C is a clique in G iff it is an IS in G's complement. 4/21/09 CS 3343 Analysis of Algorithms ## Vertex cover (VC) - Input: undirected graph G=(V,E), and $K\geq 0$ - Output: is there a subset C of V, $|C| \le K$, such that each edge in E is incident to at least one vertex in C. 4/21/09 CS 3343 Analysis of Algorithms #### Recap - We defined a large class of interesting problems, namely NP - We have a way of saying that one problem is not harder than another $(\prod)^2 \leq \prod$ - Our goal: show equivalence between hard problems 4/21/09 CS 3343 Analysis of Algorithms # **Showing equivalence between difficult problems** 22 # The first problem \prod - Satisfiability problem (SAT): - Given: a formula φ with m clauses over n variables, e.g., $x_1 \lor x_2 \lor x_5$, $x_3 \lor \neg x_5$ - Check if there exists TRUE/FALSE assignments to the variables that makes the formula satisfiable 4/21/09 25 CS 3343 Analysis of Algorithms ## Plan of attack: SAT Clique (thanks, Steve ©) Independent set Follow from Cook's Theorem 27 Conclusion: all of the above problems are NPcomplete 4/21/09 CS 3343 Analysis of Algorithms Vertex cover #### **SAT is NP-complete** TSP Clique 26 28 - Fact: SAT ∈NP - Theorem [Cook'71]: For any \prod ' \in NP we have \prod ' \leq SAT. - Definition: A problem \prod such that for any $\prod' \in NP$ we have $\prod' \leq \prod$, is called *NP-hard* - Definition: An NP-hard problem that belongs to NP is called NP-complete - Corollary: SAT is NP-complete. 4/21/09 CS 3343 Analysis of Algorithms # Clique again - Clique (decision variant): - **Input:** Undirected graph G=(V,E), and an integer $K\geq 0$ - Output: Is there a clique C, i.e., a subset C of V such that every pair of vertices in C has an edge between them, such that $|C| \ge K$? 4/21/09 CS 3343 Analysis of Algorithms # $SAT \leq Clique x$ 29 31 • Given a SAT formula $\varphi = C_1, ..., C_m$ over $x_1, ..., x_n$, we need to produce G = (V, E) and K, such that φ satisfiable iff G has a clique of size > K. • Notation: a literal is either x_i or $\neg x_i$ 4/21/09 CS 3343 Analysis of Algorithms ## **SAT** \leq **Clique** reduction - For each literal t occurring in φ , create a vertex v_t - Create an edge $v_t v_{t'}$ iff: - -t and t are not in the same clause, and - -t is not the negation of t 4/21/09 CS 3343 Analysis of Algorithms # $SAT \le Clique example$ Edge $v_t - v_{t'} \Leftrightarrow { \cdot t \text{ and } t' \text{ are not in the same clause, and } { \cdot t \text{ is not the negation of } t' }$ - Formula: $x_1 \vee x_2 \vee x_3$, $\neg x_2 \vee \neg x_3$, $\neg x_1 \vee x_2$ - Graph: • Claim: φ satisfiable iff G has a clique of size $\geq m = 1$ 4/21/09 CS 3343 Analysis of Algorithms #### **Proof** Edge $v_t - v_{t'} \Leftrightarrow {}^{\bullet} t$ and t' are not in the same clause, and ${}^{\bullet} t$ is not the negation of t' - "→" part: - Take any assignment that satisfies φ . E.g., $$x_1 = F$$, $x_2 = T$, $x_3 = F$ - Let the set C contain one satisfied literal per clause - -C is a clique 4/21/09 CS 3343 Analysis of Algorithms #### **Proof** Edge $v_{i} - v_{i} \Leftrightarrow$ - t and t are not in the same clause, and - t is not the negation of t' - "←" part: - Take any clique C of size $\geq m$ (i.e., = m) - Create a set of equations that satisfies selected literals. E.g., $$x_3 = T$$, $x_2 = F$, $x_1 = F$ – The set of equations is consistent and the solution satisfies φ 33 4/21/09 CS 3343 Analysis of Algorithms # Altogether - We constructed a reduction that maps: - YES inputs to SAT to YES inputs to Clique - NO inputs to SAT to NO inputs to Clique - The reduction works in polynomial time - Therefore, SAT \leq Clique \rightarrow Clique NP-hard - Clique is in NP → Clique is NP-complete 4/21/09 CS 3343 Analysis of Algorithms