

CS 3343 -- Spring 2009

Dynamic Programming

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

3/17/09

CS 3343 Analysis of Algorithms

Dynamic programming

- Algorithm design technique
- A technique for solving problems that have
 - overlapping subproblems
 - and, when used for optimization, have an optimal substructure property
- Idea: Do not repeatedly solve the same subproblems, but solve them only once and store the solutions in a dynamic programming table

3/17/09

CS 3343 Analysis of Algorithms

Example: Fibonacci numbers

- F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for $n \ge 2$
- Implement this recursion naively:

Solve same subproblems many times!

Runtime is exponential in n.

• Store 1D DP-table and fill bottom-up in O(n) time:

3/17/09

CS 3343 Analysis of Algorithms

Longest Common Subsequence

Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

x: A B C B D A B y: B D C A B A B BCBA = LCS(x, y)functional notation,
but not a function

3/17/09

CS 3343 Analysis of Algorithms

Brute-force LCS algorithm

Check every subsequence of x[1 ...m] to see if it is also a subsequence of v[1...n].

Analysis

- 2^m subsequences of x (each bit-vector of length *m* determines a distinct subsequence of x).
- Hence, the runtime would be exponential!

3/17/09

CS 3343 Analysis of Algorithms

▼ Towards a better algorithm

Two-Step Approach:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by | s |.

Strategy: Consider *prefixes* of x and y.

- Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] = |LCS(x, y)|.

3/17/09

CS 3343 Analysis of Algorithms

Recursive formulation

Theorem.

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

Proof. Case x[i] = v[j]:

Let z[1...k] = LCS(x[1...i], y[1...j]), where c[i, j]= k. Then, z[k] = x[i], or else z could be extended. Thus, z[1 ... k-1] is CS of x[1 ... i-1] and y[1 ... j-1]. 3/17/09 CS 3343 Analysis of Algorithms

roof (continued)

Claim: z[1 ... k-1] = LCS(x[1 ... i-1], y[1 ... j-1]).Suppose w is a longer CS of x[1 ... i-1] and y[1...j-1], that is, |w| > k-1. Then, cut and *paste*: $w \parallel z[k]$ (w concatenated with z[k]) is a common subsequence of x[1..i] and y[1..i]with |w||z[k]| > k. Contradiction, proving the claim

Thus, c[i-1, j-1] = k-1, which implies that c[i, j]= c[i-1, j-1] + 1.

Other cases are similar.

3/17/09

CS 3343 Analysis of Algorithms

Dynamic-programming hallmark #1

Optimal substructure An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recurrence

3/17/09

CS 3343 Analysis of Algorithms

Recursive algorithm for LCS

$$LCS(x, y, i, j)$$

$$if x[i] = y[j]$$

$$then c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1$$

$$else c[i, j] \leftarrow max \{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}$$

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

3/17/09

CS 3343 Analysis of Algorithms

Recursion tree

Height = $m + n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

3/17/09

CS 3343 Analysis of Algorithms

Dynamic-programming hallmark #2

A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

3/17/09

CS 3343 Analysis of Algorithms

12

Dynamic-programming

There are two variants of dynamic programming:

- 1. Memoization
- 2. Bottom-up dynamic programming (often referred to as "dynamic programming")

3/17/09

CS 3343 Analysis of Algorithms

13

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

$$\begin{aligned} & \textbf{for all } i,j \textbf{: } c[i,0] = 0 \textbf{ and } c[0,j] = 0 \\ & LCS(x,y,i,j) \\ & \textbf{if } c[i,j] = \text{NIL} \\ & \textbf{then if } x[i] = y[j] \\ & \textbf{then } c[i,j] \leftarrow LCS(x,y,i-1,j-1) + 1 \\ & \textbf{else } c[i,j] \leftarrow \max \left\{ LCS(x,y,i-1,j), \\ & LCS(x,y,i,j-1) \right\} \end{aligned}$$

Time = $\Theta(mn)$ = constant work per table entry. Space = $\Theta(mn)$.

3/17/09

CS 3343 Analysis of Algorithms

14

3/17/09 CS 3343 Analysis of Algorithms 16

