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N Dynamlc programming

* Algorithm design technique

* A technique for solving problems that have
* overlapping subproblems

« and, when used for optimization, have an optimal
substructure property

* Idea: Do not repeatedly solve the same subproblems,
but solve them only once and store the solutions in a
dynamic programming table
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“ <" Example: Fibonacci numbers

* F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n > 2

* Implement this recursion naively:

Solve same
F(n) subproblems
F(n-1) F(n-2) many times !

~ ~N ~ N . .
F(n-2) F(n-3) F(n-3) F(n-4)|Runtimeis
exponential in 7.

* Store 1D DP-table and fill bottom-up in O(n) time:
Frlofifilpfsls|s| [ [ ||
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.~ Longest Common Subsequence

Example: Longest Common Subsequence (LCS)
* Given two sequences x[1 .. m]and y[1 . . n], find
a longest subsequence common to them both.

“a’, nOt “the7,
X A/B $ B\D A|‘ B BCBA =
» B D C A B A L/Cs(x’y)
functional notation,
but not a function
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;‘i:, { Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis

* 2 subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

* Hence, the runtime would be exponential !
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;‘i:, { Towards a better algorithm

Two-Step Approach:

1. Look at the /ength of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by [s].

Strategy: Consider prefixes of x and y.
* Define ¢[7, j] = | LCS(x[1 .. 7], v[1../])|.
* Then, c[m, n] = |LCS(x, y)|.
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“<* Recursive formulation

Theorem.
o [eli-l 1]+ 1 if x[i] = yljl,
cli, j1= max {c[i-1, /], c[i, j~1]} otherwise.
Proof. Case x[i| =y[/]:

12 i
I - LI
1 2 — J n
yi L] Mo ]
Letz[1 ..kl =LCS(x[1..1],y[l../]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.

Thus, z[1 .. k-1]is CSof x[1 . .i~1]and y[1 .. /-1].
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;‘i:, X Proof (continued)

Claim: z[1 . . k—1]=LCS(x[l .. i~1], y[1 . .j—1]).
Suppose w is a longer CS of x[1 . . i—1] and
y[1..j=1], thatis, |w|> /i-1. Then, cut and
paste: w || z[ k] (w concatenated with z[£]) is a
common subsequence of x[1 .. 7] and y[1 .. /]
with |w || z[k]| > k. Contradiction, proving the
claim.

Thus, c[i—1, j—1] = k-1, which implies that [, /]

= c[i-1,j-1]+ 1.

Other cases are similar. []
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-u-: Dynamic-programming
=" hallmark #1

Optimal substructure
An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

‘ Recurrence

If z = LCS(x, ), then any prefix of z is
an LCS of a prefix of x and a prefix of y.
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;‘;;..Q Recursive algorithm for LCS

LCS(x, v, 1, ))
if x[i] = y[ /]
then c[i, j| < LCS(x, y, i1, j-1)+ 1
else [/, j| < max{LCS(x, y, i1, ),
LCS(x, v, i,j—l)}

Worst-case: x[i]| # y[ j|, in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.
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“«* Recursion tree

same
subproblem

Height = m + n = work potentially exponential,
but we’re solving subproblems already solved!
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-a—g Dynamic-programming
=" hallmark #2

Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths 7 and # is only mn.
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:f;,“' Dynamic-programming
There are two variants of dynamic
programming:

1. Memoization

2. Bottom-up dynamic programming
(often referred to as “dynamic
programming”)
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:f;,“' Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.
for all 7, j: ¢[7,0]=0 and [0, j]=0
LCS(x, v, 1, )
if c[i, j] = NIL
then if x[/] = y[/]
then c[i, j] < LCS(x, y, i—1,j-1) + 1 | same
else c[/, /] < max{LCS(x, y,i-1,/), (%
LCS(x, y. i,j-1)} | P9

Time = ®(mn) = constant work per table entry.
Space = O(mn).
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;i:,-.- Memoization

1 23 45 6 7

xA B CBDAB

LCS(x,76) 1. 10]0]0]0[0/0]|0]0
— .

(6,6) (7,5 1 B| 00 |1 |nil|nil nil|nil|nil

(55) (64) 2D |00 |1 |nil|nil|nil|nil|nil

(45) (54) s, 3) 3|00 |2 [nil|nil|nil |nil nil

: 4 A| 0|1 nilnil|nil|nil|nil|nil

5 B | 0 |nil| 2 |nil|nil|nil|nil |nil

6 A | 0 |nil|nil|nil nil|nil|nil |nil
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:f;,“' Recursive formulation

| eli= Dj 1]+1 if x[1] = y[j],
cli,j1= max { c[i— j] c[i,j~1]} otherwise.
t

J Ieliy]
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o programming algorlthm
IDEA: A B CBDAB
Compute the 0/0/0 O\LO 0100
table bottom-up. Blo Q 1+1T1g141 1
Time =0(mn). o [0 1/1 124242
4N rEr
clofol] Farglafa]2
ALO T 1 134212[333]
BloJ1[2]2 343 3
aloT1|2|2]3]54]4
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programming algorlthm

IDEA: B D A B
Compute the 0/0J0 O\LO 0{0J0
table bottom-up. o o 1o Ml Fid 4 Ny
Time =@(nn). o0 1] 1|1 124242
Reconstruct 0 6 { B 249 ; 5 2
LCS by back- N Y

tracing. A0 TJT1 12122353

L 1 Sl Eal T S

Space=@(mn). B |0 1|22 343 /3 /4
Exercise: olt112121313 T4 4

O(min{m, n}).
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