uuuuuuuuuuuuu

e CS 3343 -- Spring 2009

ALGORITHMS

e

1\\‘ \‘ T

Master Theorem
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

2/3/09 CS 3343 Analysis of Algorithms 1

g=5 The divide-and-conquer
~7 design paradigm

1. Divide the problem (instance) into
subproblems.

a subproblems, each of size n/b

2. Congquer the subproblems by solving them
recursively.

3. Combine subproblem solutions.
Runtime for divide and combine is /(1)

2/3/09 CS 3343 Analysis of Algorithms 2

uuuuuuuuuuuuu

.-!ﬂ:-,-‘ Example: merge sort

1. Divide: Trivial.

2. Conquer: Recursively sort a=2
subarrays of size n/2=n/b

3. Combine: Linear-time merge, runtime

Sin)eO(n)
T(n) =2Tn/2) + O(n)~_
subproblems subprotblem size WOk dividing
\ and combining

T(n) = aT(n/b) + f(n)

2/3/09 CS 3343 Analysis of Algorithms 3

uuuuuuuuuuuuu

3-:,-‘ The master method

The master method applies to recurrences of
the form

I(n) = aT(n/b) + f(n),

where ¢ > 1, b > 1, and / is asymptotically
positive.

2/3/09 CS 3343 Analysis of Algorithms 4

.............

H\,‘ Master theorem (summary)
TI(n) =aT(n/b) + f(n)

CASE 1: f(n) = O(n'o2* %)
= T(n) = O(n'oex?)
CASE 2: f(n) = O(n'°# loghn)
= T(n) = O(n'°2* log"*'n) .
CASE 3: f(n) = Q(n'°2 "¢y and a f(n/b) < ¢ f(n)
for some constant ¢ < 1.

= T(n) = O(f(n)) .

2/3/09 CS 3343 Analysis of Algorithms 5

.............

< \" Three common cases

Compare /() with o2
1. f(n)= O(n'*~¢) for some constant & > 0.

* /(n) grows polynomially slower than 7'°2*
(by an »* factor).

Solution: T(n) = O(n'°2s?) ,
2. f(n) = O(n'"2log"n) for some constant & > 0.
e /(n) and n'°2»* grow at similar rates.

Solution: T(n) = O(n'°2* log"'n) .

2/3/09 CS 3343 Analysis of Algorithms 6

.............

= “ Three common cases (cont.)

\1‘

Compare /(7) with n'oz:
3. f(n) = Q(n'2e" %) for some constant & > 0.

* /(n) grows polynomially faster than »'°2¢ (by
an n° factor),

and f(n) satisfies the regularity condition that
af(n/b) < cf(n) for some constant ¢ < 1.

Solution: T(n) = 0O(f(n)) .

2/3/09 CS 3343 Analysis of Algorithms 7

.............

“ﬂ Examples

Ex. T(n) =4T(n/2) + sqrt(n)
a=4,b=2= nltd=p?; f(n) = sqrt(n).
CASE 1: f(n) = O(n’*) forg = 1.5.
. T(n) = O(n?).

Ex. T(n) = 4T(n/2) + n?
a=4,b=2= nlt=p? f(n)=n
CASE 2: /(n) = O(n’log’n), that is, & = 0.
. T(n) = O(n*logn).

2/3/09 CS 3343 Analysis of Algorithms 8

uuuuuuuuuuuuu

.-!“:',_‘ Examples

Ex. T(n)=4T(n/2) +n’
a=4,b=2=n"=n; f(n)=n’.
CASE 3: f(n)=Q(n*"#) fore =1
and 4(n/2)’ < cn® (reg. cond.) for ¢ = 1/2.
o T(n) = O(n).

Ex. T(n) =4T(n/2) + n*/logn
a=4,b=2= nlw=n%; f(n) = n*/logn.
Master method does not apply. In particular,
for every constant ¢ > 0, we have log n € o(n®).

2/3/09 CS 3343 Analysis of Algorithms 9

uuuuuuuuuuuuu

.-!“:',_‘ Example: merge sort

1. Divide: Trivial.
2. Congquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

T(n) =2 T(nl2) + O(n)~——_

subproblemssybproblem size """ k dividing
and combining
nloght = ploz? = pl =n = CASE 2 (k= 0)
= T(n)=0(nlogn) .

2/3/09 CS 3343 Analysis of Algorithms 10

uuuuuuuuuuuuu

:i:-,-" Recurrence for binary search
T(n) = 1 T(n/2) + ©(1)

\
subproblems work dividing

subproblem size and combining

nlogrt = plowl = p0 =1 = CAaSE 2 (k= 0)
= T(n) = 0O(logn) .

2/3/09 CS 3343 Analysis of Algorithms 11

