1/24/06

1. Homework

Due: Tuesday 1/31/06 before class, or Excuse: Thursday 2/2/06 before class

1. Code snippets

Give the Θ -runtime depending on **n** for the code snippet below. Justify your answer.

```
for(i=n; i>=1; i=i/2){
  for(j=1; j*j<=n; j++){
    print(''Algorithms rock. '');
  }
}</pre>
```

2. Big-Oh

Use the definition of O to prove the following: If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.

3. Big-Oh ranking (12 points)

Rank the following functions by order of growth, i.e., find an arrangement $f_1, f_2, ...$ of the functions satisfying $f_1 \in O(f_2), f_2 \in O(f_3),...$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_i, f_j that are adjacent in your ordering, prove shortly why $f_i \in O(f_j)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.

$$n^2$$
, n^3 , $\log n$, 2^n , $n \log n$, 2^{n+1} , 3^n

Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the **Rule of l'Hôpital** which states that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

if the limits exist; where f'(n) and g'(n) are the derivatives of f and g, respectively.