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Graphs (review)p ( )
Definition. A directed graph (digraph)
G = (V E) is an ordered pair consisting ofG  (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E ⊆ V × V of edges• a set E ⊆ V × V of edges.
In an undirected graph G = (V, E), the edge 
set E consists of unordered pairs of verticesset E consists of unordered pairs of vertices.
In either case, we have |E | = O(|V| 2).  
Moreo er if G is connected then |E | ≥ |V | 1Moreover, if G is connected, then  |E | ≥ |V | – 1.  

( i di d )
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(Review CLRS, Appendix B.4 and B.5.)



Adjacency-matrix 
representationrepresentation

The adjacency matrix of a graph G = (V, E), where 
V {1 2 } i h i A[1 1 ]V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

1 if (i j) ∈ EA[i, j] = 1 if (i, j) ∈ E,
0 if (i, j) ∉ E.

2 1
A 1 2 3 4
1 0 1 1 0 Θ(|V| 2) storage 

3 4
2
3

0 0 1 0
0 0 0 0

(| | ) g
⇒ dense
representation.
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4 0 0 1 0



Adjacency-list representationj y p
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to vof vertices adjacent to v.

2 1 Adj[1] = {2, 3}
Adj[2] = {3}

3 4

Adj[2]  {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, | Adj[v] | = out-degree(v).
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Adjacency-list representationj y p

Handshaking Lemma:
Every edge is counted twice
• For undirected graphs:

∑ d ( ) 2 |E |∑v∈V degree(v) = 2 |E |
• For digraphs:

∑ i d ( ) + ∑ t d ( ) 2 | E |∑v∈V in-degree(v) + ∑v∈V out-degree(v) = 2 | E |

dj li Θ(|V| + |E|)⇒ adjacency lists use Θ(|V| + |E|) storage 
⇒ a sparse representation
⇒ We usually use this representation
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⇒ We usually use this representation, 
unless stated otherwise



Graph Traversalp

Let G=(V E) be a (directed or undirected)Let G=(V,E) be a (directed or undirected) 
graph, given in adjacency list representation.

|V| = n , |E| = m

A graph traversal visits every vertex:
• Breadth-first search  (BFS)

D h fi h (DFS)• Depth-first search     (DFS)
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Breadth-First Search (BFS)( )
BFS(G=(V,E))

Mark all vertices in G as “unvisited” // time=0Mark all vertices in G as unvisited  // time 0
Initialize empty queue Q
for each vertex v ∈ V do

if v is unvisitedif v is unvisited
visit v // time++
Q.enqueue(v)

BFS_iter(G)
while Q is non-empty do

BFS_iter(G)
while Q is non empty do 

v = Q.dequeue()
for each w adjacent to v do

if i i it dif w is unvisited
visit w   // time++
Add edge (v,w) to T
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Q.enqueue(w)



Example of breadth-first 
searchsearch

a

d

i h

b

d

f

c

e g

c

Q:
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Q:



Example of breadth-first 
searchsearch

a

d

i h0

b

d

f

c

e g

c

Q: a
0
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Q:  a



Example of breadth-first 
searchsearch

a

d

i h0 2

b

d

f1

c

e g

c

Q: a b d
1  2
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Q:  a  b  d



Example of breadth-first 
searchsearch

a

d

i h0 2

b

d

f1

c

e g
3 4c

Q: a b d c e

3 4

2  3  4

11/1/11 CS 3343 Analysis of Algorithms 11

Q:  a  b d  c  e



Example of breadth-first 
searchsearch

a

d

i h0 2

b

d

f1

c

e g
3 4c

Q: a b d c e

3 4

3  4
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Q:  a  b d c  e



Example of breadth-first 
searchsearch

a

d

i h0 2

b

d

f1

c

e g
3 4c

Q: a b d c e

3 4

4
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Q:  a  b d c e



Example of breadth-first 
searchsearch

a

d

i h0 2

b

d

f1
5

c

e g
3 4 6c

Q: a b d c e f g

3 4 6

5  6
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Q:  a  b d c e f  g



Example of breadth-first 
searchsearch

7
a

d

i h0 2

b

d

f1
5

c

e g
3 4 6c

Q: a b d c e f g i

3 4 6

6  7
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Q:  a  b d c e f g  i



Example of breadth-first 
searchsearch

7 8
a

d

i h0 2
a

b

d

f1
5 a

c

e g
3 4 6c

Q: a b d c e f g i h

3 4 6

7  8
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Q:  a  b d c e f g i  h



Example of breadth-first 
searchsearch

7 8
a

d

i h0 2
a

b

d

f1
5 a

c

e g
3 4 6c

Q: a b d c e f g i h

3 4 6

8
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Q:  a  b d c e f g i h



Example of breadth-first 
searchsearch

7 8
a

d

i h0 2
a

b

d

f1
5 a

c

e g
3 4 6c

Q: a b d c e f g i h

3 4 6
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Q:  a  b d c e f g i h



Example of breadth-first 
searchsearch

7 8
a

d

i h0 2
a

b

d

f1
5 a

c

e g
3 4 6c

Q: a b d c e f g i h

3 4 6
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Q:  a  b d c e f g i h



Breadth-First Search (BFS)( )
BFS(G=(V,E))

Mark all vertices in G as “unvisited” // time=0O( ) Mark all vertices in G as unvisited  // time 0
Initialize empty queue Q
for each vertex v ∈ V do

if v is unvisited

O(n)
O(1)

if v is unvisited
visit v // time++
Q.enqueue(v)

BFS_iter(G)
while Q is non-empty do

O(n)
without 
BFS iter BFS_iter(G)

while Q is non empty do 
v = Q.dequeue()
for each w adjacent to v do

if i i it d

BFS_iter

if w is unvisited
visit w   // time++
Add edge (v,w) to T

O(deg(v))
O(m)
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Q.enqueue(w)



BFS runtime

• Each vertex is marked as unvisited in the beginning ⇒ O(n) time
• Each vertex is marked at most once, enqueued at most once,
and therefore dequeued at most once
• The time to process a vertex is proportional to the size of itsThe time to process a vertex is proportional to the size of its
adjacency list (its degree), since the graph is given in adjacency list
representation
⇒ O( ) ti⇒ O(m) time
• Total runtime is O(n+m) = O(|V| + |E|)
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Depth-First Search (DFS)p ( )
DFS(G=(V,E))

Mark all vertices in G as “unvisited”  // time=0
f h V dfor each vertex v ∈ V do

if v is unvisited
DFS_rec(G,v)_ ( )

DFS_rec(G, v)
mark v as “visited” // d[v]=++time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree Tg ( , )
DFS_rec(G,w)

mark v as “finished” // f[v]=++time
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Example of depth-first searchp p

d / f
a

d

i h0/- a

b

d

f

c

e g

c

π: a  b  c  d  e  f  g  h  i
Store edges in
predecessor array
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a-



Example of depth-first searchp p

d / f
a

d

i h0/-

b

d

f1/-

c

e g

c

π: a  b  c  d  e  f  g  h  i
Store edges in
predecessor array
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a b-



Example of depth-first searchp p

d / f
a

d

i h0/-

b

d

f1/-

c

e g
2/-2/3 c

π: a  b  c  d  e  f  g  h  i

2/2/3
Store edges in
predecessor array
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a b-



Example of depth-first searchp p

d / f
a

d

i h0/-

b

d

f1/-

c

e g
2/3 c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b b-



Example of depth-first searchp p

d / f
a

d

i h0/-

b

d

f1/-

c

e g
2/3

4/-
c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b b e-



Example of depth-first searchp p

d / f
a

d

i h0/-

b

d

f1/- 5/-

c

e g
2/3

4/-
c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b b f- e



Example of depth-first searchp p

d / f
a

d

i h0/-

b

d

f1/- 5/-

c

e g
2/3

4/-
6/-

c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b b g- fe



Example of depth-first searchp p

d / f
a

d

i h0/- 7/-7/8

b

d

f1/- 5/-

c

e g
2/3

4/-
6/-

c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b b- gfe



Example of depth-first searchp p

d / f
a

d

i h0/- 7/8

b

d

f1/- 5/-

c

e g
2/3

4/-
6/-6/9

c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b b- gfe



Example of depth-first searchp p

d / f
a

d

i h0/- 7/8

b

d

f1/- 5/-

c

e g
2/3

4/-
6/9

c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b b f- gfe



Example of depth-first searchp p

d / f 10/-
a

d

i h0/- 7/8

b

d

f1/- 5/-

c

e g
2/3

4/-
6/9

c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b bi- fgfe



Example of depth-first searchp p

d / f 10/-
a

d

i h0/- 7/811/-11/12

b

d

f1/- 5/-

c

e g
2/3

4/-
6/9

c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b bi- fgfe



Example of depth-first searchp p

d / f 10/-10/13
a

d

i h0/- 7/811/12

b

d

f1/- 5/-

c

e g
2/3

4/-
6/9

c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b bi- fgfe



Example of depth-first searchp p

d / f 10/13
a

d

i h0/- 7/811/12

b

d

f1/- 5/-5/14

c

e g
2/3

4/-
6/9

c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b bi- fgfe



Example of depth-first searchp p

d / f 10/13
a

d

i h0/- 7/811/12

b

d

f1/- 5/14

c

e g
2/3

4/-
6/9

4/15
c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b bi- fgfe



Example of depth-first searchp p

d / f 10/13
a

d

i h0/- 7/811/12

b

d

f1/- 5/141/16

c

e g
2/3

6/9
4/15

c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b bi- fgfe



Example of depth-first searchp p

d / f 10/13
a

d

i h0/- 7/811/120/17

b

d

f 5/141/16

c

e g
2/3

6/9
4/15

c

π: a  b  c  d  e  f  g  h  i

2/3
Store edges in
predecessor array
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a b bi- fgfe



Depth-First Search (DFS)p ( )
DFS(G=(V,E))

Mark all vertices in G as “unvisited”  // time=0
f h V d

O(n)
for each vertex v ∈ V do

if v is unvisited
DFS_rec(G,v)

O(n)
without 
DFS rec _ ( )_

O(1)

DFS_rec(G, v)
mark v as “visited” // d[v]=++time

O(deg(v))

O(1) for each w adjacent to v do
if w is unvisited

Add edge (v,w) to tree T( g( ))
without 
recursive call

With H d h ki L ll i ll O( ) f

g ( , )
DFS_rec(G,w)

mark v as “finished” // f[v]=++time
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⇒ With Handshaking Lemma, all recursive calls are O(m), for 
a total of O(n + m) runtime



DFS runtime

• Each vertex is visited at most once ⇒ O(n) time
• The body of the for loops (except the recursive call) take constant
time per graph edge
• All for loops take O(m) time
• Total runtime is O(n+m) = O(|V| + |E|)( ) (| | | |)
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DFS edge classification
d / f

g
a i h

d / f
7/811/12

10/13
0/17 c

f

b

d

f 5/141/16

bb

bb

e

f

g 6/9
4/15c f

b

c2/3 Edge u v is a:
• tree edge, if it is part of the depth-first forest.
• back edge if u connects to an ancestor v in a depth-

c

back edge, if u connects to an ancestor v in a depth
first tree. It holds d(u)>d(v) and f(u)<f(v).
• forward edge, if it connects u to a descendant v in 
a depth-first tree. It holds d(u)<d(v).
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p ( ) ( )
• cross edge, if it is any other edge. It holds
d(u)>d(v) and f(u)>f(v).



Paths, Cycles, Connectivityy y
Let G=(V,E) be a directed (or undirected) graph
• A path from v1 to vk in G is a sequence of vertices v1, v2,…,vk such that 

(vi,v{i+1})∈E (or {vi,v{i+1}} ∈E if G is undirected) for all i∈{1,…,k-1}.
• A path is simple if all vertices in the path are distinct.
• A path v1, v2,…,vk forms a cycle if v1=vk .pat v1, v2,…,vk o s a cyc e v1 vk .
• A graph with no cycles is acyclic.

• An undirected acyclic graph is called a tree. (Trees do not have to 
have a root vertex specified )have a root vertex specified.)
• A directed acyclic graph is a DAG. (A DAG can have undirected 
cycles if the direction of the edges is not considered.)

A di t d h i t d if i f ti i t d• An undirected graph is connected if every pair of vertices is connected 
by a path. A directed graph is strongly connected if for every pair 
u,v∈V there is a path from u to v and there is a path from v to u.
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• The (strongly) connected components of a graph are the equivalence 
classes of vertices under this reachability relation.



DAG Theorem

Th A di t d h G i liTheorem: A directed graph G is acyclic
⇔ a depth-first search of G yields no back edges.
Proof:
“⇒”: Suppose there is a back edge (u,v). Then by

definition of a back edge there would be a cycle.
“⇐”: Suppose G contains a cycle c. Let v be the first vpp y

vertex to be discovered in c, and let u be the
preceding vertex in c.  v is an ancestor of u in the
depth-first forest hence (u v) is a back edge

u

v

depth first forest, hence (u,v) is a back edge.
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Topological Sortp g
Topologically sort the vertices of a directed acyclic 
graph (DAG):graph (DAG):
• Determine f : V → {1, 2, …, |V|} such that (u, v) ∈ E

⇒ f (u) < f (v).

3
4 7 81

3 5 62 9

3 5 642 7 981
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Topological Sort Algorithmp g g
• Store vertices with in-degree 0 in a queue Q.
• While Q is not emptyWhile Q is not empty

• Dequeue vertex v, and give it the next number
• Decrease in-degree of all adjacent vertices by 1

E ll ti ith i d 0

4 6 91
0 22 110 0

1

• Enqueue all vertices with in-degree 0
0

3 5 7

4 6

8

91 1

1 10

0

0 0

1
a e

dc

hf

7
2 8

3
1

2
10

0

Q

b
dc

ig

b d f i h
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Q:  a  , b  , c  , d  , e  , f  , g  , i  , h



Topological Sort Runtimep g

R tiRuntime:
• O(|V|+|E|) because every edge is touched once, and 

every vertex is enqueued and dequeued exactlyevery vertex is enqueued and dequeued exactly 
once
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DFS-Based Topological Sort 
AlgorithmAlgorithm

C ll DFS th di t d li h G (V E)• Call DFS on the directed acyclic graph G=(V,E)
⇒ Finish time for every vertex

• Reverse the finish times (highest finish timeReverse the finish times (highest finish time 
becomes the lowest finish time,…)
⇒ Valid function f ’: V → {1, 2, …, | V |} such that f { | |}

(u, v) ∈ E ⇒ f ’(u) < f ’ (v)

Runtime: O(|V|+|E|)
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DFS-Based Topological Sortp g
• Run DFS:

1 2 3 4 /5/6/11

14/17

/12

7 8 /9/10
13

14 15/16/17
/18

• Reverse finish times:

854 98

6 7

5

32

4
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6 71



DFS-Based Top. Sort Correctness

N d t h th t f ( ) E h ld f ( ) f ( )• Need to show that for any (u, v) ∈ E holds f (v) < f (u). 
(since we consider reversed finish times)

• Consider exploring edge (u, v) in DFS:
• v cannot be visited and unfinished (and hence an ancestor in 
the depth first tree), since then (u,v) would be a back edge 
(which by the DAG lemma cannot happen)(which by the DAG lemma cannot happen).
• If v has not been visited yet, it becomes a descendant of u, and 
hence f(v)<f(u) . (tree edge)

If h b fi i h d f( ) h b t d i till b i• If v has been finished, f(v) has been set, and u is still being 
explored, hence f(u)>f(v) (forward edge, cross edge) . 
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Topological Sort Runtimep g

R tiRuntime:
• O(|V|+|E|) because every edge is touched once, and 

every vertex is enqueued and dequeued exactlyevery vertex is enqueued and dequeued exactly 
once

• DFS-based algorithm:  O(|V| + |E|)
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