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We have seen so far

• Algorithms for various problems
– Running times O(nm2),O(n2) ,O(n log n),Running times O(nm ),O(n ) ,O(n log n), 

O(n), etc.
– I e polynomial in the input sizeI.e., polynomial in the input size

• Can we solve all (or most of) interesting 
problems in polynomial time ?problems in polynomial time ?

• Not really… 
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Example difficult problemp p

T li S l 2• Traveling Salesperson 
Problem (TSP; 
optimization variant) 5

8
10

4

2

9

11optimization variant)
– Input: Undirected graph 

with lengths on edges 9

8

5

311

6
g g

– Output: Shortest tour 
that visits each vertex 

7

exactly once
• Best known algorithm:    

O( 2 ) i
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O(n 2n) time.



Another difficult problemp

• Clique (optimization variant):
– Input: Undirected graph 

G (V E)G=(V,E)
– Output: Largest subset C of V

such that every pair of verticessuch that every pair of vertices 
in C has an edge between them 
(C is called a clique)

• Best known algorithm:  
O(n 2n) time
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What can we do ?

• Spend more time designing algorithms for those 
problems 
– People tried for a few decades no luckPeople tried for a few decades, no luck

• Prove there is no polynomial time algorithm for 
those problems

W ld b– Would be great
– Seems really difficult
– Best lower bounds for “natural” problems:– Best lower bounds for natural  problems:

• Ω(n2) for restricted computational models
• 4.5n for unrestricted computational models
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What else can we do ?

• Show that those hard problems are 
essentially equivalent. I.e., if we can solve 
one of them in polynomial time, then all 
others can be solved in polynomial time as 

llwell.
• Works for at least 10 000 hard problems
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The benefits of equivalenceq

• Combines researchCombines research 
efforts

• If one problem has a 
l i l ti P1polynomial time 

solution, then all of 
them do

P1

P2
• More realistically:

Once an exponential  
lower bound is shown

P2

lower bound is shown 
for one problem, it 
holds for all of them P3
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Summing upg p

• If we show that a problem ∏ is equivalent 
to ten thousand other well studied problems 
without efficient algorithms then we get awithout efficient algorithms, then we get a 
very strong evidence that ∏ is hard.

• We need to:• We need to:
– Identify the class of problems of interest

D fi th ti f i l– Define the notion of equivalence
– Prove the equivalence(s)
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Decision Problem
• Decision problems: answer YES or NO. 

E l S h P bl Π• Example: Search Problem ΠSearch
Given an unsorted set S of n numbers and a number 
key is key contained in A?key, is key contained in A?

• Input is x=(S,key)
• Possible algorithms that solve ΠSearch (x) :Possible algorithms that solve ΠSearch (x) :

– A1(x): Linear search algorithm. O(n) time
– A2(x): Sort the array and then perform binar2( ) y p

search. O(n log n) time
– A3(x): Compute all possible subsets of S (2n

many) and check each subset if it contains key
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Decision problem vs. 
optimization problemoptimization problem

3 variants of Clique:
1 I t U di t d h G (V E) d i t k ≥ 01. Input: Undirected graph G=(V,E), and an integer k ≥ 0.

Output: Does G contain a clique C such that |C| ≥ k ? 
2. Input: Undirected graph G=(V,E)

Output: Largest integer k such that G contains a clique C
with |C|=k.

3 Input: Undirected graph G=(V E)3. Input: Undirected graph G (V,E)
Output: Largest clique C of V.

3 is harder than 2 is harder than 1 So if we reason3. is harder than 2. is harder than 1. So, if we reason 
about the decision problem (1.), and can show that it is 
hard, then the others are hard as well. Also, every 
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algorithm for 3. can solve 2. and 1. as well.



Decision problem vs. 
optimization problem (cont )optimization problem (cont.)

Theorem:
a) If 1. can be solved in polynomial time, then 2. can be solved in 

l i l i
) p y ,

polynomial time.
b) If 2. can be solved in polynomial time, then 3. can be solved in 

polynomial time.
Proof:

a) Run 1. for values k = 1... n. Instead of linear search one 
could also do binary searchcould also do binary search.

b) Run 2. to find the size kopt of a largest clique in G. Now 
check one edge after the other. Remove one edge from g g
G, compute the new size of the largest clique in this new 
graph. If it is still kopt then this edge is not necessary for 
a clique. If it is less than kopt then it is part of the clique.
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Class of problems: NPp

• Decision problems: answer YES or NO. E.g.,”is 
there a tour of length ≤ K” ?

• Solvable in non-deterministic polynomial time:
– Intuitively: the solution can be verified in 

l i l tipolynomial time
– E.g., if someone gives us a tour T, we can 

verify in polynomial time if T is a tour of lengthverify in polynomial time if T is a tour of length 
≤ K.

• Therefore the decision variant of TSP is in NP
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Therefore, the decision variant of TSP is in NP. 



Formal definitions of P and NP
• A decision problem ∏ is solvable in polynomial 

time (or ∏∈P) if there is a polynomial timetime (or ∏∈P), if there is a polynomial time 
algorithm A(.) such that for any input x:

∏(x)=YES iff A(x)=YES

• A decision problem ∏ is solvable in non-
d t i i ti l i l ti ( ∏ NP) if thdeterministic polynomial time (or ∏∈NP), if there 
is a polynomial time algorithm A(. , .) such that for 
any input x:
∏(x)=YES iff  there exists a certificate y of size 

poly(|x|) such that A(x,y)=YES
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Examples of problems in NPp p

• Is “Does there exist a clique in G of size ≥K” in 
NP ? 
Yes: A(x ) interprets as a graph G as a set CYes: A(x,y) interprets x as a graph G, y as a set C, 
and checks if all vertices in C are adjacent and if 
|C|≥K

• Is Sorting in NP ? 
No, not a decision problem.

• Is “Sortedness” in NP ?
Yes: ignore y, and check if the input x is sorted.
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Reductions: ∏’ to ∏ ∏ ∏

A for ∏
YES

x ∏
NO

YES

A’ for ∏’
YES

NO

x’
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Reductions: ∏’ to ∏ ∏ ∏

A for ∏
YES

f f(x’)= x ∏
NO

f

YES

A’ for ∏’
YES

NO

x’
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Reductions
• ∏’ is polynomial time reducible to ∏ ( ∏’ ≤ ∏ ) iff 

1. there is a polynomial time function f that maps 
inputs x’ for ∏’ into inputs x for ∏, 

2. such that for any x’:2. such that for any x :
∏’(x’)=∏(f(x’))

(or in other words ∏’(x’)=YES iff ∏(f(x’)=YES)

• Fact 1: if ∏∈P and ∏’ ≤ ∏ then ∏’∈P
F t 2 if ∏ NP d ∏’ ≤ ∏ th ∏’ NP• Fact 2: if ∏∈NP and ∏’ ≤ ∏ then ∏’∈NP

• Fact 3 (transitivity): 
if ∏’’ ≤ ∏’ and ∏’ ≤ ∏ then ∏” ≤ ∏
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if ∏  ≤ ∏ and ∏  ≤ ∏ then ∏  ≤ ∏



Independent set (IS)p ( )

• Input: Undirected graph 
G=(V,E), K

• Output: Is there a subset S
of V, |S|≥K such that no pair 

f i i h dof vertices in S has an edge 
between them? (S is called 
an independent set)an independent set)
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Clique ≤ ISq
x’

• Given an input G=(V,E), K to 
Clique, need to construct an 
input G’=(V’ E’) K’ to ISinput G =(V ,E ), K to IS,

f(x’)=x
such that G has clique of size 
≥K iff G’ has IS of size ≥K’.

• Construction: K’=K,V’=V,E’=E
• Reason: C is a clique in G iff it 

i IS i G’ l
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is an IS in G’s complement. 



Recapp

• We defined a large class of interesting 
problems, namely NP

• We have a way of saying that one problem 
is not harder than another (∏’ ≤ ∏)(∏ ∏)

• Our goal: show equivalence between hard 
problemsp
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Showing equivalence between 
difficult problemsdifficult problems

TSPTSP

Clique

• Options:
– Show reductions between all 

pairs of problems Clique
– Reduce the number of 

reductions using transitivity 
of “≤”

P3 P4

P5∏’
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Showing equivalence between 
difficult problemsdifficult problems

TSPTSP

Clique

• Options:
– Show reductions between all 

pairs of problems Clique
– Reduce the number of 

reductions using transitivity 
of “≤”
Sh h ll bl i NP

∏
P3 P4

– Show that all problems in NP 
are reducible to a fixed ∏. 

To show that some

∏

P5

To show that some                         
problem ∏’∈NP is equivalent 
to all difficult problems, we 
only show ∏ ≤ ∏’ ∏’
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The first problem ∏p ∏

• Satisfiability problem (SAT):
– Given: a formula φ with m clauses over nGiven: a formula φ with m clauses over n

variables, e.g.,    x1v x2 v x5 , x3 v ¬ x5

– Check if there exists TRUE/FALSECheck if there exists TRUE/FALSE 
assignments to the variables that makes 
the formula satisfiable
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SAT is NP-completep

• Fact: SAT ∈NP
• Theorem [Cook’71]: For any ∏’∈NP ,[ ] y ∏

we have ∏’ ≤ SAT.
• Definition: A problem ∏ such that for any 
∏’ NP h ∏’ ∏ i ll d NP h d∏’∈NP we have ∏’ ≤ ∏, is called NP-hard

• Definition: An NP-hard problem that 
b l t NP i ll d NP l tbelongs to NP is called NP-complete

• Corollary: SAT is NP-complete.
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Plan of attack:

SATSAT

Cliqueq

Independent set Follow from Cook’s Theorem

(thanks, Steve ☺ )

Vertex cover

Conclusion: all of the above problems are NP-
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Clique againq g

• Clique (decision variant):
– Input: Undirected graph 

G (V E) d i t K≥0G=(V,E), and an integer K≥0
– Output: Is there a clique C, 

i e a subset C of V such thati.e., a subset C of V such that 
every pair of vertices in C has 
an edge between them, such 
that |C|≥K ?
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SAT ≤ Cliqueq
x’

• Given a SAT formula φ=C1,…,Cm over 
x1,…,xn, we need to produce 

G=(V,E) and K, 
f(x’)=x

such that φ satisfiable iff G has a clique of 
size ≥ Ksize ≥ K.

• Notation: a literal is either xi or ¬xi
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SAT ≤ Clique reductionq

• For each literal t occurring in φ, create a 
vertex vt

• Create an edge vt – vt’ iff:
– t and t’ are not in the same clause andt and t are not in the same clause, and
– t is not the negation of t’
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SAT ≤ Clique exampleq p
• t and t’ are not in the same clause, and
• t is not the negation of t’

Edge vt – vt’ ⇔

• Formula: x1v x2 v x3 , ¬ x2 v ¬ x3, ¬ x1 v x2

• Graph:Graph:

x1

¬x2

¬ x3

x2

x3
x2

¬ x1

• Claim: φ satisfiable iff G has a clique of 
size ≥ m
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Proof
• t and t’ are not in the same clause, and
• t is not the negation of t’

Edge vt – vt’ ⇔

• “→” part:
– Take any assignment that x1

¬x2

¬ x3Take any assignment that 
satisfies φ.
E g x1=F x2=T x3=F

x2

x3

3

x2E.g., x1 F, x2 T, x3 F
– Let the set C contain one 

satisfied literal per clause

¬ x1

satisfied literal per clause
– C is a clique
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Proof
• t and t’ are not in the same clause, and
• t is not the negation of t’

Edge vt – vt’ ⇔

• “←” part:
– Take any clique C of size ≥ m x1

¬x2

¬ x3

(i.e., = m) 
– Create a set of equations that 

ti fi l t d lit l

x2

x3

3

x2

satisfies selected literals.
E.g., x3=T, x2=F, x1=F

¬ x1

– The set of equations is 
consistent and the solution 
satisfies φ
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Altogetherg

• We constructed a reduction that maps:
– YES inputs to SAT to YES inputs toYES inputs to SAT to YES inputs to 

Clique
– NO inputs to SAT to NO inputs to CliqueNO inputs to SAT to NO inputs to Clique

• The reduction works in polynomial time
Th f SAT Cli Cli NP h d• Therefore, SAT ≤ Clique →Clique NP-hard

• Clique is in NP → Clique is NP-complete
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Independent set (IS)p ( )

• Input: Undirected graph 
G=(V,E), K

• Output: Is there a subset S
of V, |S|≥K such that no pair 

f i i h dof vertices in S has an edge 
between them? (S is called 
an independent set)an independent set)
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Clique ≤ ISq
x’

• Given an input G=(V,E), K to 
Clique, need to construct an 
input G’=(V’ E’) K’ to ISinput G =(V ,E ), K to IS,

f(x’)=x
such that G has clique of size 
≥K iff G’ has IS of size ≥K’.

• Construction: K’=K,V’=V,E’=E
• Reason: C is a clique in G iff it 

i IS i G’ l
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Vertex cover (VC)( )

• Input: undirected graph 
G=(V,E), and K≥0

• Output: is there a subset C
of V, |C| ≤ K, such that each 
d i i i idedge in E is incident to at 

least one vertex in C.
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IS ≤ VC
x’

• Given an input G=(V,E), K to IS, 
need to construct an input 
G’ (V’ E’) K’ to VC such thatG’=(V’,E’), K’ to VC, such that

f(x’)=x
G has an IS of size ≥K iff G’ has VC 
of size ≤K’.

• Construction: V’=V, E’=E, K’=|V|-K
• Reason: S is an IS in G iff V-S is a 

VC i G
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VC in G. 


