CS 5633 -- Spring 2010

Union-Find Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

3/23/10 CS 5633 Analysis of Algorithms

ALGORITHMS

w= Disjoint-set data structure

~% (Union-Find)

Problem:

e Maintain a dynamic collection of pairwise-disjoint
sets S ={S,, S,, ..., S;}.

 Each set S; has one element distinguished as the
representative element, rep[S;].

e Must support 3 operations:
* MAKE-SET(X): adds new set {x} to S
with rep[{x}] = x (forany x ¢ S, forall i)
* UNION(X, y): replaces sets S,, S, with S, U S, in S
(forany x, y in distinct sets S, S,)
» FIND-SET(X): returns representative rep|S,]
of set S, containing element x

3/23/10 CS 5633 Analysis of Algorithms 2

MAKE-SET(2)
MAKE-SET(3)
MAKE-SET(4)
—IND-SET(4) =4
UNION(Z, 4)
~IND-SET(4) = 2
MAKE-SET(5)
UNION(4, 5)

3/23/10

“ &~ Union-Find Example

5= DL i
S ={{Z]}

S={{2}, {3}}
S =12} 13} 14}}

S={{2 4} {3}}

S =112 4}, 13} {5}}
S={{2 4,5}, {3}}

CS 5633 Analysis of Algorithms

ALGORITHMS

w= Application:

q

~** Dynamic connectivity

Suppose a graph is given to us incrementally by
e ADD-VERTEX(V)
e ADD-EDGE(U, V)

and we want to support connectivity queries:
e CONNECTED(U, V):
Are u and v In the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

3/23/10 CS 5633 Analysis of Algorithms 4

ALGORITHMS

w= Application:

~ = =y

~% Dynamic connectivity
Sets of vertices represent connected components.
Suppose a graph is given to us incrementally by

* ADD-VERTEX(V) : MAKE-SET(V)

* ADD-EDGE(U, V) : If not CONNECTED(U, V)

then UNIoN(uU, V)

and we want to support connectivity queries:

* CONNECTED(U, V): FIND-SET(U) = FIND-SET(V)

Are U and v In the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

3/23/10 CS 5633 Analysis of Algorithms 5

AAAAAAAAAA

SN (Union- Flnd) |

* In all operations pointers to the elements x, vy
In the data structure are given.

* Hence, we do not need to first search for the
element in the data structure.

e Let n denote the overall number of elements
(equivalently, the number of MAKE-SET
operations).

3/23/10 CS 5633 Analysis of Algorithms

AAAAAAAAAA

._,‘ Slmple linked-list solution

Store each set S, = {X;, X,, ..., X, ; as an (unordered)
doubly linked Ilst Define representative element
rep[S;] to be the front of the list, x,.

Si; x| T—L x| T L |x
rep[S;]
®(1) * MAKE-SET(x) Initializes x as a lone node.
* FIND-SET(X) walks left in the list containing
®(n) xuntil it reaches the front of the list.
o) * UNION(X, y) calls FIND-SET on v, finds the

last element of list x, and concatenates both
lists, leaving rep. as FIND-SET|[X].

3/23/10 CS 5633 Analysis of Algorithms 7

AAAAAAAAAA

m

1\\

<~ Simple balanced-tree solution

maintain how?
Store each set S, = {x,, X,, ..., X, .} as a balanced tree

(ignoring keys). Define representative element
rep[S;] to be the root of the tree.

« MAKE-SET(x) initializes x ~ °1 VX2 Xa Xar Xs}
as a lone node.

 FIND-SET(X) walks up the tree
containing x until reaching root.

e UNION(X, y) calls FIND-SET on
©(log n)y, finds a leaf of x and

concatenates both trees,
changing rep. of y

CS 5633 Analysis of Algorithms H OW?

o(1)

O(log n)

3/23/10

.-‘*‘;;"'_ Plan of attack

Y

« We will build a simple disjoint-union data structure
that, in an amortized sense, performs significantly
better than ®(log n) per op., even better than
®(log log n), ®(log log log n), ..., but not quite ®(1).

* To reach this goal, we will introduce two key tricks.
Each trick converts a trivial ®(n) solution into a
simple ®(log n) amortized solution. Together, the
two tricks yield a much better solution.

e First trick arises in an augmented linked list.
Second trick arises In a tree structure.

3/23/10 CS 5633 Analysis of Algorithms 9

ALGORITHMS

m

\'\“’

Augmented linked-list solution

Store S {X{, X5, ..., X+ as unordered doubly linked list.
Augmentatlon Each element x; also stores pointer
rep[x;] to rep[S;] (which is the front of the list, x,).

rep
Si : ;(1 — X, T X,
rep[Sj]
e FIND-SET(X) returns rep|[x]. -0(1)

* UNION(X, V) concatenates lists containing
x and y and updates the rep pointers for
all elements in the list containing v. - O(n)

3/23/10 CS 5633 Analysis of Algorithms

AAAAAAAAAA

o augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S;].
UNION(X, V)
e concatenates the lists containing x and vy, and
e updates the rep pointers for all elements in the
list containing v.

rep

X T—L |%
rep[S,]

rep

Sy: Vol T—L V2| T—L V5

rep[S,]

3/23/10 CS 5633 Analysis of Algorithms 11

AAAAAAAAAA

o augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S;].
UNION(X, V)
e concatenates the lists containing x and vy, and
e updates the rep pointers for all elements in the
list containing v.

Sy U Sy ! rep

A b %]\ rep

rep[S,] \]

\ > >
Vil L Yol k Y3

rep[S,]

3/23/10 CS 5633 Analysis of Algorithms 12

AAAAAAAAAA

o augmented linked-list solution

Each element x; stores pointer rep[x;] to rep[S;].
UNION(X, V)
e concatenates the lists containing x and vy, and
e updates the rep pointers for all elements in the
list containing v.

Sy U Sy !

rep

Xq X1\

rep[S, U Sy‘] \\

\

Yil — |IY2| |— |Y3

3/23/10 CS 5633 Analysis of Algorithms 13

AAAAAAAAAA

UNION(X, V) coulo
e concatenate t
e Update the re

~ &~ Alternative concatenation

Instead
ne lists containing vy and x, and

0 pointers for all elements in the

list containing x.

rep

rep

rep[S,]

Sy' Yol | —F Vol | —1 [V

rep[S,]

3/23/10

CS 5633 Analysis of Algorithms 14

AAAAAAAAAA

UNION(X, V) coulo
e concatenate t

e Update the re
list containing x.

S.uUS,:

rep

Instead
ne lists containing vy and x, and
0 pointers for all elements in the

X y-*

Y1

3/23/10

Yo

~ &~ Alternative concatenation

rep[S,]

CS 5633 Analysis of Algorithms

Y3

15

~ &~ Alternative concatenation

UNIoN(X, v) could instead
e concatenate the lists containing y and x, and
e update the rep pointers for all elements in the
list containing x.

rep

_ /1% T [%

Val T—L Vo T—L [V; /
rep[S, v S,]

3/23/10 CS 5633 Analysis of Algorithms 16

ALGORITHMS

=7 Trick 1: Smaller into larger
S (weighted-union heuristic)

To save work, concatenate the smaller list onto the
end of the larger list. Cost = ®(length of smaller list).
Augment list to store its weight (# elements).

* Let n denote the overall number of elements
(equivalently, the number of MAKE-SET operations).

 Let m denote the total number of operations.

e Let f denote the number of FIND-SET operations.

Theorem: Cost of all UNION’s 1s O(n log n).
Corollary: Total cost is O(m + n log n).

3/23/10 CS 5633 Analysis of Algorithms 17

ol AnaIySIS Of TriCk 1

N

— (weilghted-union heuristic)

Theorem: Total cost of UNION’s Is O(n log n).

Proof. « Monitor an element x and set S, containing it.
o After initial MAKE-SET(x), weight[S,] = 1.
* Each time S, Is united with S, ;
* If weight[S,] > weight[S,]:
— pay 1 to update rep[x], and
— weight[S,] at least doubles (increases by weight[S,]).
* If weight[S,] < weight[S,]:
— pay nothing, and
—weight[S,] only increases.
Thus pay < log n for x.

3/23/10 CS 5633 Analysis of Algorithms 18

AAAAAAAAAA

Representmg sets as trees

Store each set S, = {X;, X,, ..., X, ; as an unordered,
potentially unbalanced, not necessarily binary tree,

storing only parent pointers. rep[S;] Is the tree root.

* MAKE-SET(X) Initializes x
as alone node. —O(1)
 FIND-SET(X) walks up the rep[Si] | x,
tree containing x until it
reaches the root. — ©(depth[x])
o UNION(X, V) calls FIND-SET twice
and concatenates the trees
containing x and y...— ©(depth[x])

3/23/10 CS 5633 Analysis of Algorithms 19

Si = {X1, X, X3, X4, X5, X6}

AAAAAAAAAA

adan

“~ Trick 1 adapted to trees

* UNION(X, y) can use a simple concatenation strategy:

Make root FIND-SET(Y) a child of root FIND-SET(X).

= FIND-SET(Y) = FIND-SET(X).

e Adapt Trick 1 to this context:
Union-by-weight:
Merge tree with smaller

%
IS
IS
I
%
IS

welight into tree with

larger weight.

o Variant of Trick 1 (see book):
Union-by-rank:
rank of a tree = Its height

3/23/10 CS 5633 Analysis of Algorithms

L 4

yv5

20

m Trick 1 adapted to trees
(unlon by-weight)

° Helght of tree is logarithmic in weight, because:

e Induction onn
 Height of atree T is determined by the two subtrees

T,, T, that T has been united from.
* Inductively the heights of T,, T, are the logs of their
weights.
 If T, and T, have different heights:
height(T) = max(height(T,), height(T,))
= max(log weight(T,), log weight(T,))
< log weight(T)
 If T, and T, have the same heights:
(Assume 2<weight(T,)<weight(T,))
height(T) = height(T,) + 1 = log (2*weight(T,))
< log weight(T)

e Thus the total cost of any m operations is O(m log n).
3/23/10 CS 5633 Analysis of Algorithms 21

AAAAAAAAAA

T —

“ &~ Trick 2: Path compression

When we execute a FIND-SET operation and walk

up a path p to the root, we know the representative

for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(X)
Is still ®(depth[x]).

FIND-SET(Y,)

3/23/10 CS 5633 Analysis of Algorithms

Ys

22

AAAAAAAAAA

T —

“ &~ Trick 2: Path compression

When we execute a FIND-SET operation and walk

up a path p to the root, we know the representative

for all the nodes on path p.

Path compression makes
all of those nodes direct
children of the root.

Cost of FIND-SET(X)
Is still ®(depth[x]).

FIND-SET(Y,)

3/23/10 CS 5633 Analysis of Algorithms

Ys

23

“ &~ Trick 2: Path compression

When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative

for all the nodes on path p. y
1
Path compression makes 44

all of those nodes direct YillY2] | Y3
children of the root.] T
Cost of FIND-SET(X) Y4 E

Is still ®(depth[x]). FIND-SET(Y,)
= 2

3/23/10 CS 5633 Analysis of Algorithms 24

AAAAAAAAAA

rv—

“ &~ Trick 2: Path compression

* Note that UNION(x,y) first calls FIND-SET(x) and
FIND-SET(Y). Therefore path compression also
affects UNION operations.

3/23/10 CS 5633 Analysis of Algorithms 25

"« Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET’s 1S O(m log n).
Proof: By amortization. Omitted.

3/23/10 CS 5633 Analysis of Algorithms

26

=3 Ackermann’s fu nction A, and
It’s “inverse’

Defi (i) =- J+1 |fk—O,
efine Ad)= \Ak“_Il)(j) If k>1. - iterate j+1 times
Aol) =1 +1 A (1) =2
Al(J) h 2.] _ _ Al(l) =3
A()~2]2>2 A, (1) =7
20 A;(1) = 2047
22.. >j ..22047 .
As(j) > 2 J 22' » 2048 times
A,(]) is a lot bigger. A,(1) > 2 ,

Define a(n) = min {k : A (1) > n} <4 for practlcal .

3/23/10 CS 5633 Analysis of Algorithms

AAAAAAAAAA

¥ Analysis of Tricks 1 + 2
«7 for disjoint-set forests

Theorem: In general, total cost is O(m a.(n)).

(long, tricky proof — see Section 21.4 of CLRS)

3/23/10 CS 5633 Analysis of Algorithms

28

