CLIFFORD STEIN

More on Shortest Paths

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

11/22/11 CS 3343 Analysis of Algorithms

ALGORITHMS

m

\'\“’

Negative-weight cycles

Recall If a graph G = (V/, E) contains a negative-
weight cycle, then some shortest paths may not exist.

Example:

Bellman-Ford algorithm: Finds all shortest-path
welghts from a source s € Vtoall v e IVor
determines that a negative-weight cycle exists.

11/22/11 CS 3343 Analysis of Algorithms 2

AAAAAAAAAA

M Bellman-Ford algorithm

d[S] 0)

foreachv e V'—{s} ~ initialization
do d[v] « o

J

fori« 1to|V|-1do
for each edge (u, v) € £ do
It d[v] > d[u] + w(u, v) then 3 relaxation
dlv] « d[u] + w(u,v) L step
m[v] < u
for each edge (u, v) € E
do if d[v] > d[u] + w(u, v)
then report that a negative-weight cycle exists
At the end, d[v] = (s, v). Time = O(|V||E|).

11/22/11 CS 3343 Analysis of Algorithms

0 A B C D E

O o0 o0 o o

11/22/11 CS 3343 Analysis of Algorithms

ALGORITHMS

SH

~«+ Example of Bellman-Ford
Order of edges: (B.E), (D,B), (B.D), (A.B), (A.C), (D,C), (B.C), (E.D)
-1 A B C D FE

O o0 o0 o o

0 -1 o o

11/22/11 CS 3343 Analysis of Algorithms 5

- Example of Bellman-Ford

NN
Y

Order of edges: (B.E), (D.B). (B.D), (A.B). (A.C). (D,C), (B.C), (E.D)
-1 A B C D FE

O o0 o0 o o

0 -1 o o

0 -1 4 o

11/22/11 CS 3343 Analysis of Algorithms 6

ALGORITHMS

SH

~«+ Example of Bellman-Ford
Order of edges: (B.E), (D,B), (B.D), (A.B), (A.C), (D,C), (B.C), (E.D)

3 8 8

11/22/11 CS 3343 Analysis of Algorithms 7

11/22/11

3 8 8

CS 3343 Analysis of Algorithms

ALGORITHMS

SH

~«+ Example of Bellman-Ford
Order of edges: (B.E), (D,B), (B.D), (A.B), (A.C), (D,C), (B.C), (E.D)

318 8 8
R8 8 8

11/22/11 CS 3343 Analysis of Algorithms 9

ALGORITHMS

~«+ Example of Bellman-Ford
Order of edges: (B.E), (D,B), (B.D), (A.B), (A.C), (D,C), (B.C), (E.D)

11/22/11 CS 3343 Analysis of Algorithms 10

ALGORITHMS

~+~ Example of Bellman-Ford

1\\‘

Order of edges: (B.E), (D.B). (B.D), (A.B). (A.C). (D,C), (B.C), (E.D)

11/22/11 CS 3343 Analysis of Algorithms 11

Note: Values decrease
monotonically. ... and 2 more iterations

11/22/11 CS 3343 Analysis of Algorithms 12

ALGORITHMS

=~ Correctness

Theorem. If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = o(s, v) forall v € V.

Proof. Letv € J be any vertex, and consider a shortest

path p from s to v with the minimum number of edges.
y

A AN A

Since p 1Is a shortest path, we have
o(s, v;) = 0(s, vig) + w(viy, v) -

11/22/11 CS 3343 Analysis of Algorithms 13

AAAAAAAAAA

m

1\\

Correctness (continued)
)

OO

Initially, d[v,] = 0 = 6(s, v,), and d|s] Is unchanged by
subsequent relaxations.

 After 1 pass through £, we have d[v,]| = 6(s, v,).
* After 2 passes through £, we have d[v,] = o(s, v,).

. After & passes through £, we have d[v,] = o(s, v,).

Since G contains no negative-weight cycles, p Is simple.
Longest simple path has < | /| — 1 edges.

11/22/11 CS 3343 Analysis of Algorithms 14

AAAAAAAAAA

cycles

Corollary. If a value d[v] fails to converge after
| V| — 1 passes, there exists a negative-weight
cycle in G reachable from s.

11/22/11 CS 3343 Analysis of Algorithms 15

‘ « DAG shortest paths

If the graph Is a directed acyclic graph (DAG), we first
topologically sort the vertices.

e Determine /= V' — {1, 2, ..., ||} such that (u, v) € E
= f(u) <f(v).

11/22/11 CS 3343 Analysis of Algorithms 16

-« DAG shortest paths

If the graph is a directed acyclic graph (DAG), we first
topologically sort the vertices.
e Determine /= V' — {1, 2, ..., ||} such that (u, v) € E

= f(u) <f(v).
. O(|V] + |E|) time

« Walk through the vertices € V in this order, relaxing

the edges In Adj[u], thereby obtaining the shortest paths
from s In a total of O(|V] + |E|) time.

11/22/11 CS 3343 Analysis of Algorithms 17

=~ Shortest paths
Single-source shortest paths
* Nonnegative edge weights

o Dijkstra’s algorithm: O(|£| log |V])
 General: Bellman-Ford: O(|V]|E|)
* DAG: One pass of Bellman-Ford: O(|V] + |E])

All-pairs shortest paths
* Nonnegative edge weights
 Dijkstra’s algorithm | V| times: O(|V||E| log |V])
e General
 Bellman-Ford |//] times: O(|V] ?|E|)
 Floyd-Warshall: O(|/] ®)

11/22/11 CS 3343 Analysis of Algorithms

18

AAAAAAAAAA

Input: Digraph G = (V, E), where |V| = n, with
edge-weight function w : £ — R,

Output: n x n matrix of shortest-path lengths
o(i,j) foralli,j € V.

Algorithm #1.:

* Run Bellman-Ford once from each vertex.
e Time = O(|V| ?|E)).

 But: Dense graph = O(|V/| %) time.

11/22/11 CS 3343 Analysis of Algorithms

19

AAAAAAAAAA

Floyd -Warshall algorithm

\.
1\‘_’

. Dynamlc programming algorithm.

e Assume V={1, 2, ..., n}, and assume G IS given
In an adjacency matrix 4= (ay)m i<p Where ;. Is
the weight of the edge from i to ;.

Define ¢, (*) = weight of a shortest path from
to ; with intermediate vertices
belonging to the set {1, 2, .

(D h—p—h—h 0

Thus, 6(i, /) = ¢;, 1) Also, C; (0) = a;.

11/22/11 CS 3343 Analysis of Algorithms 20

“ &~ Floyd-Warshall recurrence

¢, =min {c;), ¢,V + ¢ (D}

Z
Do not use vertex k | Use vertex k

¢, D) (1)

Clj

Intermediate vertices in {1, 2, ..., k-1}

11/22/11 CS 3343 Analysis of Algorithms 21

\ Pseudocode for Floyd-
~ - Warshall

for k< 1tondo
fori <« 1tondo
forj <« 1tondo

" k-1 k-1 k-1 .
if ¢,V > ¢ 0 + ¢, -V then }relaxatlon

k-1 k-1
Cl'j(k) <— Cik() + ij()

else
k k-1
Cij() N Cij(/

* Runs in ©(»?) time and space
« Simple to code.
e Efficient In practice.

11/22/11 CS 3343 Analysis of Algorithms 22

ALGORITHMS

;’\ﬂ Shortest paths

Single-source shortest paths

* Nonnegative edge weights

* Dijkstra’s algorithm: O(|£| log |V]))
e General: Bellman-Ford: O(|V||E|) ~ad]. list
* DAG: One pass of Bellman-Ford: O(|V] + |E])

All-pairs shortest paths

 Nonnegative edge weights ad]. list

 Dijkstra’s algorit
e General

nm | V| times: O(|V]|E| log |V])

 Bellman-Ford |V

times: O(|V| 2|E|) ad]. list

* Floyd-Warshall: O(|V/] 3) adj. matrix

11/22/11 CS 3343 Analysis of Algorithms 23

ALGORITHMS

~ &~ Johnson’s algorithm

1\\‘

1. Compute a weight function w from w such that
w(u, v) = 0 for all (u, v) € £ . (Or determine that a
negative-weight cycle exists, and stop.)

e Can bedone in O(|V|| E|) time (detalls skipped)

2. Run Dijkstra’s algorithm from each vertex using .
 Time=O(|V]| E| log |V]).

3. Reweight each shortest-path length vi(p) to produce
the shortest-path lengths w(p) of the original graph.
e Time = O(|V]?) (details skipped)

Total time = O(|V]| £| log |V]).

11/22/11 CS 3343 Analysis of Algorithms 24

ALGORITHMS

;’\ﬂ Shortest paths

Single-source shortest paths

* Nonnegative edge weights

* Dijkstra’s algorithm: O(|£| log |V]))
e General: Bellman-Ford: O(|V||E|) ~ad]. list
* DAG: One pass of Bellman-Ford: O(|V] + |E])

All-pairs shortest paths

 Nonnegative edge weights ad]. list

 Dijkstra’s algorit
e General

nm | V| times: O(|V]|E| log |V])

 Bellman-Ford |V

times: O(|V| 2|E|) ad]. list

* Floyd-Warshall: O(|V/] 3) adj. matrix
e Johnson’s algorithm: O(|V| |E| log |V]) adj. list

11/22/11 CS 3343 Analysis of Algorithms 25

