Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

10/6/11 CS 3343 Analysis of Algorithms

Select the Ith smallest of n elements (the
element with rank 1).

| = 1: minimum;
* | =N: maximum;
o i =[(n+1)/2]or| (n+1)/2 |: median.

Naive algorithm: Sort and index ith element.

Worst-case running time = ©(n log n + 1)
= O(n log n),
using merge sort or heapsort (Not quicksort).

10/6/11 CS 3343 Analysis of Algorithms

@~ Randomized divide-and-

N
.

«> " conquer algorithm

RAND-SELECT(A, P, (, 1) © i-th smallest of A[p . . (]
If p=q then return A[p]
I <~ RAND-PARTITION(A, P, Q)

K«—r—p+1 > K = rank(A[r])
If 1=Kk then return A[r]
if i<k

then return RAND-SELECT(A, p, r—1, 1)
else return RAND-SELECT(A, r + 1,0, 1 —k)

k R
< Alr] > Alr]
p r G

10/6/11 CS 3343 Analysis of Algorithms 3

AAAA

\'f;"‘;.“ Example

Select the | = 7th smallest:
6 10|13 | 5| 8 | 3 |2 |11
NIvVOot

Partition:
215136 8 13]10/|11

“ Y,
N

10/6/11

RITHMS

k

4

Select the 7 — 4 = 3rd smallest recursively.

CS 3343 Analysis of Algorithms

: ""‘ Intuition for analysis

‘\

(All our analyses today assume that all elements
are distinct.)

for RAND-PARTITION

Lucky: ——
T(n) =T(9n/10) + dn nlogioeol =n0 =1
= (N) CASE 3
Unlucky:
T(n)=T(n—1)+dn arithmetic series
= O(n?)

Worse than sorting!

10/6/11 CS 3343 Analysis of Algorithms

AAAAAAAAAA

—_— AnaIyS|s of expected time

\‘

The analysis follows that of randomized
quicksort, but 1t’s a little different.

Let T(n) = the random variable for the running
time of RAND-SELECT on an 1nput of size n,
assuming random numbers are independent.

For k=0, 1, ..., n—1, define the Indicator
random variable

Y — { 1 if PARTITION generates a k : n—k—1 split,
< [0 otherwise.

10/6/11 CS 3343 Analysis of Algorithms

ALGORITHMS

e
«
W

“Analysis (continued)

To obtain an upper bound, assume that the | th element
always falls in the larger side of the partition:

T(n)= <

" T(max{0, n—1}) + dn if 0 : n—1 split,
T(max{l, n—2}) +dn if 1 : n—2 split,

_ T(max{n-1, 0}) +dn if n—1: 0 split,

=§XK(T(max{k,n—k—1})+dn)

10/6/11

CS 3343 Analysis of Algorithms 7

ALGORITHMS

=4 Calculating expectation

\\‘ \‘

E[T(n)]=E| 2 nZiXk(T(k)ern)

k=|n/2]

Take expectations of both sides.

10/6/11 CS 3343 Analysis of Algorithms

2 Y X, (T(k)+dn)
]

=2 Y E[X, (T(k)+dn)]

k=|n/2|

Linearity of expectation.

10/6/11 CS 3343 Analysis of Algorithms

Calculating expectation

-
D\ \‘

E[T(M]=E|2 > X, (T(k)+dn)

=2 Y E[X,] E[T(k)+dn]

k= n/2]

Independence of X, from other random
choices.

10/6/11 CS 3343 Analysis of Algorithms

10

E[T(n)]=E 2kLZi(k(T(k)+dn)
=2K_EZiJE[><k(T<k>+dn)]_
=2k$?[xk].E[T(k)+dn]
=3 nZl:ET(k) L2 nidn

N) N i)

Linearity of expectation; E[X,] = 1/n.

10/6/11 CS 3343 Analysis of Algorithms

ALGORITHMS

10/6/11

n—

k=|n/2]
1

Calculating expectation

n—1

X, (T (k)+dn)

CS 3343 Analysis of Algorithms

12

AAAAAAAAAA

""'"W‘ Halry recurrence

\
\
AR

(But not quite as halry as the quicksort one.)

E[T(n)] = Z E[T (k)]+dn

N, =[n/2]

Prove: E[T(n)] <cn for constant ¢ > 0.

* The constant C can be chosen large enough
so that E[T(Nn)] < cn for the base cases.

Use fact: D k< gnz (exercise).
k=/n/2 |

10/6/11 CS 3343 Analysis of Algorithms 13

AAAAAAAAAA

10/6/11

:;‘";",'1 Substitution method

n—1

E[T(n)]ég > ck +dn
Ny JIhi2)

Substitute inductive hypothesis.

CS 3343 Analysis of Algorithms

14

10/6/11

~ .+ Substitution method

n—1

E[T(n)]s2 > ck +dn
Ny Jhi2)

s§(§n2j+dn
n\8

Use fact.

CS 3343 Analysis of Algorithms

15

"~ Substitution method

n—1
E[T(n)]sz > ck +dn
N2

S&(gni\jern =3 a{

& T Nt an
cn

zcn—(?—dnjlgv_%ch _l'O{v\

Express as desired — residual.

10/6/11 CS 3343 Analysis of Algorithms 16

10/6/11

"~ Substitution method

n—1
E[T(n)]< z > ck +dn
Ny Jhi2)

s£(§n2j+dn
n\g

=cn—(ﬂ—dnj
4

CS 3343 Analysis of Algorithms

17

- q

~2" order-statistic selection

» Works fast: linear expected time.
* Excellent algorithm 1n practice.
* But, the worst case is very bad: ®(n?).

Q. Is there an algorithm that runs in linear
time 1n the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

IDEA: Generate a good pivot recursively.

10/6/11 CS 3343 Analysis of Algorithms

18

StatIStICS

SELECT(I, n)

1. D1vide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median X of the Ln/5.
group medians to be the pivot.

3. Partition around the pivot x. Let k = rank(x)."
4.1f 1=Kk then return x

elseif 1<k Same as
then recursively SELECT the ith > RAND-
smallest element 1n the lower part SELECT

else recursively SELECT the (I-K)th
smallest element in the upper part

10/6/11 CS 3343 Analysis of Algorithms 19

ALGORITHMS

10/6/11

Choosing the pivot

CS 3343 Analysis of Algorithms

20

1.

10/6/11

ivide the n elements into groups of 5.

CS 3343 Analysis of Algorithms

Choosing the pivot

21

AAAAAAAAAA

F"'"! Choosing the pivot

1\\‘

1. D1vide the n elements into groups of 5. Find lesser
the median of each 5-element group by rote. I

greater

10/6/11 CS 3343 Analysis of Algorithms 22

AAAAAAAAAA

W ¥ Choosing the pivot

(’(’ -y

>
O O

- ~
M X SO

1. D1vide the n elements into groups of 5. Find lesser
the median of each 5-element group by rote.

2. Recursively SELECT the median X of the | n/5]
group medians to be the pivot. greater

10/6/11 CS 3343 Analysis of Algorithms 23

ALGOR iiiii

Developmg the recurrence

“\‘

T(n) SELECT(I, N)
" 1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the | n/5 |
T(n/5) = group medians to be the pivot.

—

®(n) 3. Partition around the pivot X. Let k = rank(X).

(4. if i =kthen return x
elseif 1<k
then recursively SELECT the ith
smallest element in the lower part
else recursively SELECT the (I-K)th
N smallest element in the upper part

10/6/11 CS 3343 Analysis of Algorithms 24

O(n) -

T(?) A4

ALGORITHMS

AnalySiS (Assume all elements are distinct.)

-
.
\——

\‘, ciric

““

i

: @%
1

At least half the group medians are < X, which lesser
is at least | Ln/SJg/ﬂ = n/10] group medians. I

greater

10/6/11 CS 3343 Analysis of Algorithms 25

ALGORITHMS

T AnaIySiS (Assume all elements are distinct.)

,\ :‘@%

At least half the group medians are < X, which lesser
is at least | Ln/SJg/ﬂ = n/10] group medians. I

* Therefore, at least 3 | n/10] elements are < x.

greater

10/6/11 CS 3343 Analysis of Algorithms 26

ALGORITHMS

r— AnalySiS (Assume all elements are distinct.)

1

At least half the group medians are < X, which lesser
is at least | Ln/SJg/ﬂ = n/10] group medians. I

* Therefore, at least 3 | n/10] elements are < x.
» Similarly, at least 3| n/10] elements are > x. greater

10/6/11 CS 3343 Analysis of Algorithms 27

;

) ~~\
S8 S5

- ?‘\‘ AnalySiS (Assume all elements are distinct.)

WY et

Need “at most” for worst-case runtime

e At least 3| n/10] elements are < x
—'at most n-3| n/10 | elements are > X

e At least 3| n/10] elements are > x
— at most N-3| n/10 | elements are < X

* The recursive call to SELECT in Step 4 1s
executed recursively on n-3 | n/10. elements.

10/6/11 CS 3343 Analysis of Algorithms 28

ALGORITHMS

ﬁ AnalySiS (Assume all elements are distinct.)

» Use fact that | a/b] > ((a-(b-1))/b (page 51)

e n-31.n/10] < n-3-(n-9)/10 = (10n -3n +27)/10
<7n/10 + 3
* The recursive call to SELECT in Step 4 1s

executed recursively on at most 7n/10+3
clements.

10/6/11 CS 3343 Analysis of Algorithms 29

ALGOR iiiii

Developmg the recurrence

“\‘

T(n)

O(n) -

SELECT(I, N)
" 1. Divide the n elements into groups of 5. Find
_ the median of each 5-element group by rote.
2. Recursively SELECT the median x of the Ln/5.

T(n/5)
O(n)

T(7n/10 <
+3)

group medians to be the pivot.
3. Partition around the pivot X. Let k = rank(X).

(4. if i =kthen return x
elseif 1<k
then recursively SELECT the ith
smallest element in the lower part
else recursively SELECT the (I-K)th

—

10/6/11

N smallest element in the upper part

CS 3343 Analysis of Algorithms 30

= .~ Solving the recurrence
-_ for O(n)

T(n) ZT(lnj+T(ln+3j+dn7
5 10

Substitution: T(n)<c(n— 3)+c(—n+3 3)+dn
T(n) < c(n - 3) :

N gicn—3c+dn
10

Technical trick. This
shows that T(n)e O(n)

1
—c(n—3)——cn+d
c(n—3) 0 cn+dn
<c(n-3),
if ¢ 1s chosen large enough, e.g., c=10d

10/6/11 CS 3343 Analysis of Algorithms 31

AAAAAAAAAA

- Conclusmns

1\\‘

° Smce the work at each level of recursion i1s
basically a constant fraction (9/10) smaller,
the work per level 1s a geometric series
dominated by the linear work at the root.

* In practice, this algorithm runs slowly,
because the constant in front of n 1s large.

* The randomized algorithm is far more
practical.

Exercise: Try to divide into groups of 3 or /.

10/6/11 CS 3343 Analysis of Algorithms 32

