
CS 3343 – Fall 2011

Order Statistics
Carola Wenk

Slides courtesy of Charles Leiserson with small

10/6/11 CS 3343 Analysis of Algorithms 1

y
changes by Carola Wenk

Order statisticsOrder statistics
Select the ith smallest of n elements (the
element with rank i).
• i = 1: minimum;;
• i = n: maximum;
• i = ⎣(n+1)/2⎦ or ⎡(n+1)/2⎤: median.() ()

Naive algorithm: Sort and index ith element.
W t i ti Θ(l + 1)Worst-case running time = Θ(n log n + 1)

= Θ(n log n),
i t h t (t i k t)

10/6/11 CS 3343 Analysis of Algorithms 2

using merge sort or heapsort (not quicksort).

Randomized divide-and-
l ithconquer algorithm

RAND-SELECT(A, p, q, i) i-th smallest of A[p . . q] (p q) [p q]
if p = q then return A[p]
r ← RAND-PARTITION(A, p, q)
k ← + 1 k k(A[])k ← r – p + 1 k = rank(A[r])
if i = k then return A[r]
if i < kif i < k

then return RAND-SELECT(A, p, r – 1, i)
else return RAND-SELECT(A, r + 1, q, i – k)

≤ A[r] ≥ A[r]
k

10/6/11 CS 3343 Analysis of Algorithms 3

rp q

ExampleExample

Select the i = 7th smallest:

i = 76 10 13 5 8 3 2 11

Select the i = 7th smallest:

pivot

P i i
k = 42 5 3 6 8 13 10 11

Partition:

Select the 7 – 4 = 3rd smallest recursively.

10/6/11 CS 3343 Analysis of Algorithms 4

Select the 7 4 3rd smallest recursively.

Intuition for analysisIntuition for analysis
(All our analyses today assume that all elements

Lucky:

(y y
are distinct.)

for RAND-PARTITION
Lucky:

101log 9/10 == nn
CASE 3

T(n) = T(9n/10) + dn
= Θ(n) CASE 3 Θ(n)

Unlucky:
T(n) = T(n – 1) + dn arithmetic seriesT(n) T(n 1) + dn

= Θ(n2)
arithmetic series

Worse than sorting!
10/6/11 CS 3343 Analysis of Algorithms 5

Worse than sorting!

Analysis of expected timeAnalysis of expected time

The analysis follows that of randomized

Let T(n) = the random variable for the running

The analysis follows that of randomized
quicksort, but it’s a little different.
Let T(n) = the random variable for the running
time of RAND-SELECT on an input of size n,
assuming random numbers are independent.assuming random numbers are independent.
For k = 0, 1, …, n–1, define the indicator
random variablerandom variable

Xk = 1 if PARTITION generates a k : n–k–1 split,
0 otherwise

10/6/11 CS 3343 Analysis of Algorithms 6

k 0 otherwise.

Analysis (continued)Analysis (continued)
To obtain an upper bound, assume that the i th element

T(max{0, n–1}) + dn if 0 : n–1 split,

pp
always falls in the larger side of the partition:

T(n) =
T(max{1, n–2}) + dn if 1 : n–2 split,

M
({ 1 0}) d if 1 0 liT(max{n–1, 0}) + dn if n–1 : 0 split,

()∑
−

+−−=
1

})1(max{
n

dnknkTX ()∑
=

+−−=
0

})1,(max{
k

k dnknkTX
.

()∑
−

+≤
1

)(2
n

k dnkTX

10/6/11 CS 3343 Analysis of Algorithms 7

()
⎣ ⎦
∑

= 2/
)(

nk
k

Calculating expectationCalculating expectation

()⎥
⎤

⎢
⎡

+= ∑
−1

)(2)]([
n

k dnkTXEnTE

Take expectations of both sides.

()
⎣ ⎦

⎥
⎦

⎢
⎣

+∑
= 2/

)(2)]([
nk

k dnkTXEnTE

Take expectations of both sides.

10/6/11 CS 3343 Analysis of Algorithms 8

Calculating expectationCalculating expectation

()∑
−

⎥
⎤

⎢
⎡

+=
1

)(2)]([
n

k dnkTXEnTE ()
⎣ ⎦

()[]∑

∑
−

=

+=

⎥
⎦

⎢
⎣

+

1

2/

)(2

)(2)]([

n

nk
k

dnkTXE

dnkTXEnTE

Linearity of expectation.

()[]
⎣ ⎦
∑

=

+=
2/

)(2
nk

k dnkTXE

y p

10/6/11 CS 3343 Analysis of Algorithms 9

Calculating expectationCalculating expectation

()∑
−

⎥
⎤

⎢
⎡

+=
1

)(2)]([
n

k dnkTXEnTE ()
⎣ ⎦

()[]∑

∑
−

=

+=

⎥
⎦

⎢
⎣

+

1

2/

)(2

)(2)]([

n

nk
k

dnkTXE

dnkTXEnTE

()[]
⎣ ⎦

[] []∑

∑
−

=

+⋅=

+=

1

2/

)(2

)(2

n

nk
k

dnkTEXE

dnkTXE

Independence of Xk from other random

[] []
⎣ ⎦
∑

=

+⋅=
2/

)(2
nk

k dnkTEXE

p k
choices.

10/6/11 CS 3343 Analysis of Algorithms 10

Calculating expectationCalculating expectation

()∑
−

⎥
⎤

⎢
⎡

+=
1

)(2)]([
n

k dnkTXEnTE ()
⎣ ⎦

()[]∑

∑
−

=

+=

⎥
⎦

⎢
⎣

+

1

2/

)(2

)(2)]([

n

nk
k

dnkTXE

dnkTXEnTE

()[]
⎣ ⎦

[] []∑

∑
−

=

+⋅=

+=

1

2/

)(2

)(2

n

nk
k

dnkTEXE

dnkTXE

[] []
⎣ ⎦

[] ∑∑

∑
−−

=

+=

+⋅=

11

2/

2)(2

)(2

nn

nk
k

dnkTE

dnkTEXE

Linearity of expectation; E[Xk] = 1/n .

[]
⎣ ⎦ ⎣ ⎦

∑∑
==

+=
2/2/

)(
nknk

dn
n

kTE
n

10/6/11 CS 3343 Analysis of Algorithms 11

Linearity of expectation; E[Xk] 1/n .

Calculating expectationCalculating expectation

()dnkTXEnTE
n

k ⎥
⎤

⎢
⎡

+= ∑
−1

)(2)]([()
⎣ ⎦

()[]dnkTXE

dnkTXEnTE

n

nk
k

+=

⎥
⎦

⎢
⎣

+

∑

∑
−

=

1

2/

)(2

)(2)]([

()[]
⎣ ⎦

[] []dnkTEXE

dnkTXE

n

nk
k

+⋅=

+=

∑

∑
−

=

1

2/

)(2

)(2

[] []
⎣ ⎦

[] dnkTE

dnkTEXE

nn

nk
k

+=

+⋅=

∑∑

∑
−−

=

11

2/

2)(2

)(2

[]
⎣ ⎦ ⎣ ⎦

[] dnkTE

dn
n

kTE
n

n

nknk

+=

+=

∑

∑∑
−

==

1

2/2/

)(2

)(

10/6/11 CS 3343 Analysis of Algorithms 12

[]
⎣ ⎦

dnkTE
n nk

+= ∑
= 2/

)(

Hairy recurrenceHairy recurrence
(But not quite as hairy as the quicksort one.)

[]
⎣ ⎦

dnkTE
n

nTE
n

k
+= ∑

−1

2/
)(2)]([

⎣ ⎦n nk = 2/

Prove: E[T(n)] ≤ cn for constant c > 0 .
• The constant c can be chosen large enough

so that E[T(n)] ≤ cn for the base cases.

Use fact: 2
1

8
3nk

n
∑
−

≤ (exercise).

10/6/11 CS 3343 Analysis of Algorithms 13

⎣ ⎦2/
8

nk
∑

=
()

Substitution methodSubstitution method
[] dncknTE

n

+≤ ∑
−12)([]

⎣ ⎦n nk
∑

= 2/

Substitute inductive hypothesis.

10/6/11 CS 3343 Analysis of Algorithms 14

Substitution methodSubstitution method
[] dncknTE

n

+≤ ∑
−12)([]

⎣ ⎦

dnnc

n nk

+⎟
⎞

⎜
⎛≤

∑
=

2

2/

32 dnn
n

+⎟
⎠

⎜
⎝

≤
8

Use fact.

10/6/11 CS 3343 Analysis of Algorithms 15

Substitution methodSubstitution method
[] +≤ ∑

−

dncknTE
n2)(

1

[]
⎣ ⎦

+⎟
⎞

⎜
⎛≤

∑
=

dnnc

n nk

32 2

2/

⎟
⎞

⎜
⎛

+⎟
⎠

⎜
⎝

≤

dcn

dnn
n 8

⎟
⎠
⎞

⎜
⎝
⎛ −−= dncncn

4

Express as desired – residual.

10/6/11 CS 3343 Analysis of Algorithms 16

Substitution methodSubstitution method
[] dncknTE

n

+≤ ∑
−2)(
1

[]
⎣ ⎦

dnnc

n nk

+⎟
⎞

⎜
⎛≤

∑
=

32 2

2/

dcn

dnn
n

⎟
⎞

⎜
⎛

+⎟
⎠

⎜
⎝

≤
8

cn

dncncn

≤

⎟
⎠
⎞

⎜
⎝
⎛ −−=

4
cn≤

if c ≥ 4d .
,

10/6/11 CS 3343 Analysis of Algorithms 17

Summary of randomized
d i i l iorder-statistic selection

• Works fast: linear expected time• Works fast: linear expected time.
• Excellent algorithm in practice.
• But the worst case is very bad: Θ(n2)• But, the worst case is very bad: Θ(n).

Q. Is there an algorithm that runs in linear
i i h ?time in the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest,
d T j [1973]

IDEA: Generate a good pivot recursively.

and Tarjan [1973].

10/6/11 CS 3343 Analysis of Algorithms 18

g p y

Worst-case linear-time order
i istatistics

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2 Recursively SELECT the median x of the ⎣n/5⎦2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).

if i = k then return x
elseif i < k

then recursively SELECT the ith

p ()
4.

Same as
RANDthen recursively SELECT the ith

smallest element in the lower part
else recursively SELECT the (i–k)th

RAND-
SELECT

10/6/11 CS 3343 Analysis of Algorithms 19

smallest element in the upper part

Choosing the pivotChoosing the pivot

10/6/11 CS 3343 Analysis of Algorithms 20

Choosing the pivotChoosing the pivot

1 Divide the n elements into groups of 51. Divide the n elements into groups of 5.

10/6/11 CS 3343 Analysis of Algorithms 21

Choosing the pivotChoosing the pivot

lesser1 Divide the n elements into groups of 5 Find lesser1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

10/6/11 CS 3343 Analysis of Algorithms 22

greater

Choosing the pivotChoosing the pivot

x

lesser1 Divide the n elements into groups of 5 Find lesser1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the ⎣n/5⎦

10/6/11 CS 3343 Analysis of Algorithms 23

greater
y

group medians to be the pivot.

Developing the recurrenceDeveloping the recurrence
SELECT(i, n)T(n) (,)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2 R i l S h di f h ⎣ /5⎦

()

Θ(n)
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3 Partition around the pivot x Let k = rank(x)

T(n/5)
Θ(n)

if i = k then return x
elseif i < k

h i l S h i h

3. Partition around the pivot x. Let k rank(x).
4.

Θ(n)

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
T()?

10/6/11 CS 3343 Analysis of Algorithms 24

y ()
smallest element in the upper part

Analysis (Assume all elements are distinct)Analysis (Assume all elements are distinct.)

x

lesserAt least half the group medians are ≤ x which lesserAt least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.

10/6/11 CS 3343 Analysis of Algorithms 25

greater

Analysis (Assume all elements are distinct)Analysis (Assume all elements are distinct.)

x

lesserAt least half the group medians are ≤ x which lesserAt least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

10/6/11 CS 3343 Analysis of Algorithms 26

greater

Analysis (Assume all elements are distinct)Analysis (Assume all elements are distinct.)

x

lesserAt least half the group medians are ≤ x which lesserAt least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

10/6/11 CS 3343 Analysis of Algorithms 27

greater• Similarly, at least 3 ⎣n/10⎦ elements are ≥ x.

Analysis (Assume all elements are distinct)Analysis (Assume all elements are distinct.)

Need “at most” for worst-case runtime

• At least 3 ⎣n/10⎦ elements are ≤ x
⇒ at most n-3 ⎣n/10⎦ elements are ≥ x⇒ at most n 3 ⎣n/10⎦ elements are ≥ x

• At least 3 ⎣n/10⎦ elements are ≥ x
⇒ at most n-3 ⎣n/10⎦ elements are ≤ x⇒ at most n 3 ⎣n/10⎦ elements are ≤ x

• The recursive call to SELECT in Step 4 is
executed recursively on n-3 ⎣n/10⎦ elementsexecuted recursively on n-3 ⎣n/10⎦ elements.

10/6/11 CS 3343 Analysis of Algorithms 28

Analysis (Assume all elements are distinct)Analysis (Assume all elements are distinct.)

• Use fact that ⎣a/b⎦ ≥ ((a-(b-1))/b (page 51)
• n 3 ⎣n/10⎦ ≤ n 3·(n 9)/10 = (10n 3n +27)/10• n-3 ⎣n/10⎦ ≤ n-3·(n-9)/10 = (10n -3n +27)/10

≤ 7n/10 + 3
Th i ll t SELECT i St 4 i• The recursive call to SELECT in Step 4 is
executed recursively on at most 7n/10+3
elementselements.

10/6/11 CS 3343 Analysis of Algorithms 29

Developing the recurrenceDeveloping the recurrence
SELECT(i, n)T(n) (,)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2 R i l S h di f h ⎣ /5⎦

()

Θ(n)
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3 Partition around the pivot x Let k = rank(x)

T(n/5)
Θ(n)

if i = k then return x
elseif i < k

h i l S h i h

3. Partition around the pivot x. Let k rank(x).
4.

Θ(n)

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
T(7n/10

+3)

10/6/11 CS 3343 Analysis of Algorithms 30

y ()
smallest element in the upper part

Solving the recurrenceSolving the recurrence
dnnTnTnT +⎟

⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛= 3

10
7

5
1)(

for Θ(n)

⎠⎝⎠⎝ 105
)(

)337()31()(+−++−≤ dnncncnTSubstitution:

3
10
9

)
10

()
5

()(

+−≤ dnccn
T(n) ≤ c(n - 3)

10
1)3(

10

+−−= dncnnc

Technical trick. This
shows that T(n)∈ O(n)

if c is chosen large enough e g c=10d
)3(

10
−≤ nc ,

10/6/11 CS 3343 Analysis of Algorithms 31

if c is chosen large enough, e.g., c=10d

ConclusionsConclusions
• Since the work at each level of recursion is

basically a constant fraction (9/10) smaller,
the work per level is a geometric series
dominated by the linear work at the root.

• In practice, this algorithm runs slowly,
because the constant in front of n is large.

• The randomized algorithm is far more g
practical.

Exercise: Try to divide into groups of 3 or 7
10/6/11 CS 3343 Analysis of Algorithms 32

Exercise: Try to divide into groups of 3 or 7.

