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Order statisticsOrder statistics
Select the ith smallest of n elements (the 
element with rank i).
• i = 1: minimum;;
• i = n: maximum;
• i = ⎣(n+1)/2⎦ or ⎡(n+1)/2⎤: median.( ) ( )

Naive algorithm: Sort and index ith element.
W t i ti Θ( l + 1)Worst-case running time = Θ(n log n + 1)

= Θ(n log n),
i t h t ( t i k t)
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using merge sort or heapsort (not quicksort).



Randomized divide-and-
l ithconquer algorithm

RAND-SELECT(A, p, q, i) i-th smallest of A[ p . . q] ( p q ) [ p q]
if p = q  then return A[p]
r ← RAND-PARTITION(A, p, q)
k ← + 1 k k(A[ ])k ← r – p + 1 k = rank(A[r])
if  i = k  then return A[r]
if i < kif  i < k  

then return RAND-SELECT(A, p, r – 1, i )
else return RAND-SELECT(A, r + 1, q, i – k )

≤ A[r] ≥ A[r]
k
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ExampleExample

Select the i = 7th smallest:

i = 76 10 13 5 8 3 2 11

Select the i = 7th smallest:

pivot

P i i
k = 42 5 3 6 8 13 10 11

Partition:

Select the 7 – 4 = 3rd smallest recursively.
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Select the 7 4  3rd smallest recursively.



Intuition for analysisIntuition for analysis
(All our analyses today assume that all elements 

Lucky:

( y y
are distinct.)

for RAND-PARTITION
Lucky:

101log 9/10 == nn
CASE 3

T(n) = T(9n/10) + dn
= Θ(n) CASE 3 Θ(n)

Unlucky:
T(n) = T(n – 1) + dn arithmetic seriesT(n)  T(n 1) + dn

= Θ(n2)
arithmetic series

Worse than sorting!
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Worse than sorting!



Analysis of expected timeAnalysis of expected time

The analysis follows that of randomized

Let T(n) = the random variable for the running

The analysis follows that of randomized 
quicksort, but it’s a little different.
Let T(n) = the random variable for the running 
time of RAND-SELECT on an input of size n, 
assuming random numbers are independent.assuming random numbers are independent.
For k = 0, 1, …, n–1, define the indicator 
random variablerandom variable

Xk = 1 if PARTITION generates a k : n–k–1 split,
0 otherwise
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k 0 otherwise.



Analysis (continued)Analysis (continued)
To obtain an upper bound, assume that the i th element 

T(max{0, n–1}) + dn if 0 : n–1 split,

pp
always falls in the larger side of the partition:

T(n) =
T(max{1, n–2}) + dn if 1 : n–2 split,

M
( { 1 0}) d if 1 0 liT(max{n–1, 0}) + dn if n–1 : 0 split,
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Calculating expectationCalculating expectation
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Calculating expectationCalculating expectation
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Calculating expectationCalculating expectation

( )∑
−

⎥
⎤

⎢
⎡

+=
1

)(2)]([
n

k dnkTXEnTE ( )
⎣ ⎦

( )[ ]∑

∑
−

=

+=

⎥
⎦

⎢
⎣

+

1

2/

)(2

)(2)]([

n

nk
k

dnkTXE

dnkTXEnTE

( )[ ]
⎣ ⎦

[ ] [ ]∑

∑
−

=

+⋅=

+=

1

2/

)(2

)(2

n

nk
k

dnkTEXE

dnkTXE

Independence of Xk from other random 

[ ] [ ]
⎣ ⎦
∑

=

+⋅=
2/

)(2
nk

k dnkTEXE

p k
choices.

10/6/11 CS 3343 Analysis of Algorithms 10



Calculating expectationCalculating expectation
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Linearity of expectation; E[Xk]  1/n .



Calculating expectationCalculating expectation
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Hairy recurrenceHairy recurrence
(But not quite as hairy as the quicksort one.)
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Prove: E[T(n)] ≤ cn for constant c > 0 .
• The constant c can be chosen large enough 

so that E[T(n)] ≤ cn for the base cases.

Use fact: 2
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Substitution methodSubstitution method
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Substitute inductive hypothesis.
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Substitution methodSubstitution method
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Substitution methodSubstitution method
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Express as desired – residual.

10/6/11 CS 3343 Analysis of Algorithms 16



Substitution methodSubstitution method
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Summary of randomized 
d i i l iorder-statistic selection

• Works fast: linear expected time• Works fast: linear expected time.
• Excellent algorithm in practice.
• But the worst case is very bad: Θ(n2)• But, the worst case is very bad: Θ(n ).

Q. Is there an algorithm that runs in linear 
i i h ?time in the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest, 
d T j [1973]

IDEA: Generate a good pivot recursively.

and Tarjan [1973].
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Worst-case linear-time order 
i istatistics

SELECT(i, n)
1. Divide the n elements into groups of 5.  Find 

the median of each 5-element group by rote.
2 Recursively SELECT the median x of the ⎣n/5⎦2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3. Partition around the pivot x.  Let k = rank(x).

if  i = k then return x
elseif  i < k 

then recursively SELECT the ith

p ( )
4.

Same as 
RANDthen recursively SELECT the ith 

smallest element in the lower part
else recursively SELECT the (i–k)th 

RAND-
SELECT
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smallest element in the upper part



Choosing the pivotChoosing the pivot
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Choosing the pivotChoosing the pivot

1 Divide the n elements into groups of 51. Divide the n elements into groups of 5.
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Choosing the pivotChoosing the pivot

lesser1 Divide the n elements into groups of 5 Find lesser1. Divide the n elements into groups of 5.  Find 
the median of each 5-element group by rote.
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greater



Choosing the pivotChoosing the pivot

x

lesser1 Divide the n elements into groups of 5 Find lesser1. Divide the n elements into groups of 5.  Find 
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the ⎣n/5⎦
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group medians to be the pivot.



Developing the recurrenceDeveloping the recurrence
SELECT(i, n)T(n) ( , )
1. Divide the n elements into groups of 5.  Find 

the median of each 5-element group by rote.
2 R i l S h di f h ⎣ /5⎦

( )

Θ(n)
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3 Partition around the pivot x Let k = rank(x)

T(n/5)
Θ(n)

if  i = k then return x
elseif  i < k 

h i l S h i h

3. Partition around the pivot x.  Let k  rank(x).
4.

Θ(n)

then recursively SELECT the ith 
smallest element in the lower part

else recursively SELECT the (i–k)th 
T(      )?
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y ( )
smallest element in the upper part



Analysis (Assume all elements are distinct )Analysis (Assume all elements are distinct.)

x

lesserAt least half the group medians are ≤ x which lesserAt least half the group medians are ≤ x, which 
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians. 
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Analysis (Assume all elements are distinct )Analysis (Assume all elements are distinct.)

x

lesserAt least half the group medians are ≤ x which lesserAt least half the group medians are ≤ x, which 
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.
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Analysis (Assume all elements are distinct )Analysis (Assume all elements are distinct.)

x

lesserAt least half the group medians are ≤ x which lesserAt least half the group medians are ≤ x, which 
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.
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greater• Similarly, at least 3 ⎣n/10⎦ elements are ≥ x.



Analysis (Assume all elements are distinct )Analysis (Assume all elements are distinct.)

Need “at most” for worst-case runtime

• At least 3 ⎣n/10⎦  elements are ≤ x
⇒ at most n-3 ⎣n/10⎦  elements are ≥ x⇒ at most n 3 ⎣n/10⎦  elements are ≥ x

• At least 3 ⎣n/10⎦  elements are ≥ x
⇒ at most n-3 ⎣n/10⎦  elements are ≤ x⇒ at most n 3 ⎣n/10⎦  elements are ≤ x

• The recursive call to SELECT in Step 4 is 
executed recursively on n-3 ⎣n/10⎦ elementsexecuted recursively on n-3 ⎣n/10⎦ elements.
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Analysis (Assume all elements are distinct )Analysis (Assume all elements are distinct.)

• Use fact that ⎣a/b⎦ ≥ ((a-(b-1))/b      (page 51)
• n 3 ⎣n/10⎦ ≤ n 3·(n 9)/10 = (10n 3n +27)/10• n-3 ⎣n/10⎦ ≤ n-3·(n-9)/10 = (10n -3n +27)/10

≤ 7n/10 + 3
Th i ll t SELECT i St 4 i• The recursive call to SELECT in Step 4 is 
executed recursively on at most 7n/10+3
elementselements.
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Developing the recurrenceDeveloping the recurrence
SELECT(i, n)T(n) ( , )
1. Divide the n elements into groups of 5.  Find 

the median of each 5-element group by rote.
2 R i l S h di f h ⎣ /5⎦

( )

Θ(n)
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3 Partition around the pivot x Let k = rank(x)

T(n/5)
Θ(n)

if  i = k then return x
elseif  i < k 

h i l S h i h

3. Partition around the pivot x.  Let k  rank(x).
4.

Θ(n)

then recursively SELECT the ith 
smallest element in the lower part

else recursively SELECT the (i–k)th 
T(7n/10

+3)
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y ( )
smallest element in the upper part



Solving the recurrenceSolving the recurrence
dnnTnTnT +⎟
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T(n) ≤ c(n - 3)
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Technical trick. This 
shows that T(n)∈ O(n)

if c is chosen large enough e g c=10d
)3(

10
−≤ nc ,
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if c is chosen large enough, e.g., c=10d



ConclusionsConclusions
• Since the work at each level of recursion is 

basically a constant fraction (9/10) smaller, 
the work per level is a geometric series 
dominated by the linear work at the root.

• In practice, this algorithm runs slowly, 
because the constant in front of n is large.

• The randomized algorithm is far more g
practical.

Exercise: Try to divide into groups of 3 or 7
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Exercise: Try to divide into groups of 3 or 7.


