Randomized Algorithms & Quicksort

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

9/27/11 CS 5633 Analysis of Algorithms 1

ALGORITHMS

~« Deterministic Algorithms

\.\‘\"

Runtlme for deterministic algorithms with input
Size n:
 Best-case runtime
=>» Attained by one input of size n
 \Worst-case runtime
=>» Attained by one input of size n
 Average runtime
=>» Averaged over all possible inputs of size n

9/27/11 CS 5633 Analysis of Algorithms 2

mi== Deterministic Algorithms:

i

~*" Insertion Sort
Best-case runtime: O(n), input [1,2,3,...,n]

=>» Attained by one input of size n

* Worst-case runtime: O(n?), input [n, n-1, ...,2,1]
=>» Attained by one input of size n

 Average runtime : O(n?); see book for analysis
=>» Averaged over all possible inputs of size n

*What kind of inputs are there?
 How many Inputs are there?

9/27/11 CS 5633 Analysis of Algorithms 3

AAAAAAAAAA

m

w \‘\‘

Average Runtime

. What kind of inputs are there?

- Do [1,2,...,n] and [5,6,...,n+5] cause
different behavior of Insertion Sort?

« No. Therefore It suffices to only consider
all permutations of [1,2,...,n].

 How many Inputs are there?

- There are n! different permutations of
[1,2,...,n]

9/27/11 CS 5633 Analysis of Algorithms 4

for j=2 to n {
key = A[]]

AAAAAAAA Ave rage R u ntl me iiq A[9] into sorted sequen

" Insertion Sort: n=4 et
0 Inputs. 41=24 e
[1234] 0] [4123]3 [413.2] 4[[4321] 6
2134] T [1423]2 [1432] 3 [3421] 5
[1324] 1 [1.243] 1 [1342] 2 [3.241] 4
3124] 2 [4213] 4 [4312]5 [4.231]5
321413 [2143]2 [3412]4 [2431] 4
2314] 2 [2134] 1 [3142] 3 [2341] 3

e Runtime is proportional to: 3 + #times in while loop
 Best: 3+0, Worst: 3+6=9, Average: 3+70/24 = 592

9/27/11 CS 5633 AnaIyS|s of Algorithms

= ‘Sort

* The average runtime averages runtimes over
all n! different input permutations

 Disadvantage of considering average runtime:

» There are still worst-case Inputs that will
have the worst-case runtime

 Are all inputs really equally likely? That
depends on the application

—> Better: Use a randomized algorithm

9/27/11 CS 5633 Analysis of Algorithms 6

=== Randomized Algorithm:

~
, ,

Q

= Insertion Sort
 Randomize the order of the input array:

e Either prior to calling insertion sort,
e or during Insertion sort (insert random element)

* This makes the runtime depend on a probabilistic
experiment (sequence of numbers obtained from
random number generator)

—Runtime Is a random variable (maps sequence
of random numbers to runtimes)

» Expected runtime = expected value of runtime
random variable

9/27/11 CS 5633 Analysis of Algorithms 7

=== Randomized Algorithm:

~
, ,

~*' " Insertion Sort
e Runtime iIs independent of input order
([1,2,3,4] may have good or bad runtime,
depending on sequence of random numbers)

*No assumptions need to be made about input
distribution

* No one specific input elicits worst-case behavior

* The worst case Is determined only by the output
of a random-number generator.

— When possible use expected runtimes of
randomized algorithms instead of average case
analysis of deterministic algorithms

9/27/11 CS 5633 Analysis of Algorithms 8

AAAAAAAAAA

chksort

* Proposed by C.A.R. Hoare in 1962.
 Divide-and-conquer algorithm.

e Sorts “In place” (like insertion sort, but not
like merge sort).

 Very practical (with tuning).

* We are going to perform an expected runtime
analysis on randomized quicksort

9/27/11 CS 5633 Analysis of Algorithms

ALGORITHMS

< Quicksort: Divide and conguer

\.
1\‘_’

chksort an n-element array:

1. Divide: Partition the array into two subarrays
around a pivot x such that elements in lower
subarray < x < elements in upper subarray.

< X X > X

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

9/27/11 CS 5633 Analysis of Algorithms 10

ALGORITHMS

~~ Partitioning subroutine

%
1\\‘ \‘

PArRTITION(A, P,) = A[p..q]

X Al p] = pivot = Al p] /Running time\
:c<—_|0 - = 0O(n) forn
orj«<p+1toq

do if Al] < x kelements.)

then 1<« 1+1
exchange All] <> Al]
exchange Al p] <> Ali]
return i

Invariant: | x <X > X ?
p | J g

9/27/11 CS 5633 Analysis of Algorithms 11

ALGORITHMS

\"-1'?",'1 Example of partitioning

ny

6 1013, 5|8 |3 | 2 |11

9/27/11 CS 5633 Analysis of Algorithms

ALGORITHMS

\"-1'?",'1 Example of partitioning

ny

6 110(13| 5|8 |3 | 2 |11

i —]

9/27/11 CS 5633 Analysis of Algorithms

ALGORITHMS

\"-1'?",'1 Example of partitioning

ny

6 10(13| 5 |8 | 3| 2 |11

]

9/27/11 CS 5633 Analysis of Algorithms

9/27/11

“+ Example of partitioning

CS 5633 Analysis of Algorithms

10113 | 5 11
5 (13| 10 11
— j

15

9/27/11

“+ Example of partitioning

10| 13| 5 11
5 | 13| 10 11
| —]

CS 5633 Analysis of Algorithms

16

9/27/11

“+ Example of partitioning

1013 5 | 8 | 3 11
5 11310 8 | 3 11
i —]

CS 5633 Analysis of Algorithms

17

10113 | 5 3 11
5 (13| 10 3 11
5 10 13 11

CS 5633 Analysis of Algorithms

18

9/27/11

“+ Example of partitioning

10|13 | 5 3|2 |11

5 |13 10 3|2 |11

5| 3 |10 13| 2 |11
i — |

CS 5633 Analysis of Algorithms

19

9/27/11

“+ Example of partitioning

10113 | 5 3|2 |11
5 (13| 10 3|2 |11
5 |3 |10 13| 2 |11
5|3]| 2 13110 | 11

— j

CS 5633 Analysis of Algorithms

20

9/27/11

“+ Example of partitioning

10113 | 5 3|2 |11
5 (13| 10 3|2 |11
5 |3 |10 13| 2 |11
5|3]| 2 13110 | 11

CS 5633 Analysis of Algorithms

—)

21

9/27/11

“+ Example of partitioning

10113 | 5 3|2 |11
5 (13| 10 3|2 |11
5 |3 |10 13| 2 |11
5|3]| 2 13110 | 11

CS 5633 Analysis of Algorithms

22

9/27/11

“+ Example of partitioning

10113 | 5 3|2 |11
5 (13| 10 3|2 |11
5 |3 |10 13| 2 |11
5|3]| 2 13110 | 11
S |3 | O 13110 | 11

CS 5633 Analysis of Algorithms

23

ALGORITHMS

”ﬂ Pseudocode for quicksort

P

QUICKSORT(A, p, I)
ifp<r
then g <— PARTITION(A, p, I)
QUICKSORT(A, p, g-1)
QUICKSORT(A, +1, 1)

Initial call: QuicksorT(A, 1, n)

9/27/11 CS 5633 Analysis of Algorithms

ALGORITHMS

i

\.
1\‘\‘

9/27/11

<~ Analysis of quicksort

» Assume all input elements are distinct.

* In practice, there are better partitioning
algorithms for when duplicate input
elements may exist.

 Let T(n) = worst-case running time on
an array of n elements.

CS 5633 Analysis of Algorithms

25

QUICKSORT(A, p, 1)
M AAAAAAAAAA Worst-case of |
‘ then g < PARTITION(A, p, 7)
- \ QUICKSORT(A. p, g—1)
q U I C kSO rt QUICKSORT(A. g+ 1, 1)

e Input sorted or reverse sorted.
e Partition around min or max element.
 One side of partition always has no elements.

T(N)=TO)+T(n-1)+6G(n)
=OQ)+T(n-1)+06(n)
=T(n-1)+O(Nn)
= O(n?) (arithmetic series)

9/27/11 CS 5633 Analysis of Algorithms 26

“ .~ Worst-case recursion tree
| T(n) = T(0) + T(n=1) + cn

9/27/11 CS 5633 Analysis of Algorithms

27

~ .~ Worst-case recursion tree
| T(n) = T(0) + T(n=1) + cn
T(n)

9/27/11 CS 5633 Analysis of Algorithms

28

Worst-case recursion tree
T(n) =T(0) + T(n-1) + cn

Cch
TN
T(0) T(n-1)

9/27/11 CS 5633 Analysis of Algorithms

29

Worst-case recursion tree
T(n) =T(0) + T(n-1) + cn

Cch
N
T(0) c(n-1)
N
T(0) T(n-2)

9/27/11 CS 5633 Analysis of Algorithms

30

-~ Worst-case recursion tree
T(n) = T(0) + T(n-1) + cn
cn
RS
T(0) c(n-1)
N
T(0) c(n-2)
RN
T6) -
~
O(1)

9/27/11 CS 5633 Analysis of Algorithms

31

“ .+ Worst-case recursion tree

T(n) = T(0) + T(n-1) +cn

height
o oS
T(O) c(n 1) 7 \ka
T(0) c(n—-2
height = n () (/l
T0) -
~
T(0)

32

S Worst-case recursion tree
T(n) = T(0) + T(n-1) + cn
1 S0 .
T(O) c(n 1) /[kz; j o[

height = e C@‘Q
() -

| ~
T(0)

9/27/11 CS 5633 Analysis of Algorithms

33

Worst-case recursion tree
T(n) = T(0) + T(n-1) + ¢cn

N @[n kj:@) 2
of iy O
X
. O(1) c(n-2)
height = n S~ T(n) = O(n) + O(n?)
O(1) = O(n?)
~
O(1)

9/27/11 CS 5633 Analysis of Algorithms 34

ALGORITHMS

=4 Best-case analysis
~ (For intuition only!)

If we’re lucky, PARTITION splits the array evenly:

T(n) =2T(n/2) + B(n)
=®(nlogn) (same as merge sort)

- 9 5
10 10

T(N)=T(Ln)+T(2n)+6O(n)
What is the solution to this recurrence?

What If the split Is always

9/27/11 CS 5633 Analysis of Algorithms 35

AAAAAAAAAA

- "" Analysis of “almost-best™ case

b,
.

i

ny

T(n)

9/27/11 CS 5633 Analysis of Algorithms 36

AAAAAAAAAA

’\," Analysis of “almost-best™ case

T(lO)/ \(n)

9/27/11 CS 5633 Analysis of Algorithms 37

9/27/11 CS 5633 Analysis of Algorithms 38

/Cn_ """""""" ch
an %Cn A
SN/
xcn ch cn

10Cf/ 100/ \ 1/ \

/

O(1) [O(n) leaves }

9/27/11 CS 5633 Analysis of Algorithms 39

/ 130/”‘\ 44 \ ““““ i

/.. :

0(1) [O(n) leaves } \ :
O(1)

O(nlog n)

cnlog,,n <T(n) <cnlog,yen + O(N)

9/27/11 CS 5633 Analysis of Algorithms 40

ALGORITHMS

m

W \‘\‘

Quicksort Runtimes

* Best case runtime T,..(n) € O(n log n)
 Worst case runtime T,,..(n) € O(n?)

» Worse than mergesort? Why is it called
quicksort then?

* Its average runtime T, ,(n) € O(n logn)

o Better even, the expected runtime of
randomized quicksort is O(n log n)

9/27/11 CS 5633 Analysis of Algorithms 41

AAAAAAAAAA

m

\.\‘\"

Average Runtime

The average runtime T, (n) for Quicksort Is
the average runtime over all possible inputs
of Iength n.

avg(N) has to average the runtimes over all n!
dlfferent Input permutations.

 There are still worst-case inputs that will
have a O(n?) runtime

—> Better: Use randomized quicksort

9/27/11 CS 5633 Analysis of Algorithms 42

ALGORITHMS

n—mmm

< Randomized quicksort

:;\‘\‘
IDEA Partition around a random element.

e Running time is independent of the Input
order. It depends only on the sequence s
of random numbers.

* No assumptions need to be made about
the input distribution.

* No specific input elicits the worst-case
behavior.

* The worst case Is determined only by the
seqguence s of random numbers.

9/27/11 CS 5633 Analysis of Algorithms 43

s== Randomized quicksort

pe— .

analy5|s
e T(n,s) =random variable for the running time
of randomized quicksort on an input of size n,

with sequence s of random numbers which are
assumed to be independent.

e E(T(n)) = expected value of T(n,s), the

“expected runtime” of randomized quicksort.

(T(0,9) + T(n-1,8) + ®(n) if 0:n-1 split,
T(1,8) + T(n-2,5) + ©(n) 1f 1:n-2 split,

T(n,s) =<

_T(n-1,5) + T(0,s) + ®(n) 1f n—1:0 split,

9/27/11 CS 5633 Analysis of Algorithms 44

”'!3 Randomized quicksort
- analysis

Fork=20,1, ..., n-1, define the indicator
random variable

X, (5)= { if PARTITION generates a k : n—k—1 split,
“ 0 otherwise.

E[X,] = Pr{X,=1} = 1/n, since all splits are
equally likely, assuming elements are distinct.

9/27/11 CS 5633 Analysis of Algorithms 45

Analysis (continued)

"T(0,8) + T(n-1,8) + ®(n) if 0:n-1 split,
T(1,8) + T(n-2,5) + ©(n) 1f 1:n-2 split,

_T(n-1,5) + T(0,s) + ®(n) 1f n—1:0 split,

n_

X, (S)(T(k,s)+T(n-k-1,5)+06(n))

1
k=0

9/27/11 CS 5633 Analysis of Algorithms 46

AAAAAAAAAA

=« Calculating expectation

ET (1= E| 3 X,(T()+T(n—Kk -1+ ©(n))
k=0

Take expectations of both sides.

9/30/10 CS 5633 Analysis of Algorithms

47

Calculating expectation

-
D\ \‘

E[T (n)] = Erilxk(ﬂkm(n —k-1)+0(n))
k=0
= nilE[Xk(T (K)+T(h—-k-=-1)+ @(n))]
k=0

Linearity of expectation.

9/30/10 CS 5633 Analysis of Algorithms

48

Calculating expectation

-
D\ \‘

n-1

ELT(N)] = E| Y. X,(T(K) +T(n—k-1)+6(n))
k=0

— nz_:lE[Xk(T(k) +T(n-k-1)+0(n))]
k=0

= nfE[xk]- E[T(k)+T(n-k-1)+6(n)]
k=0

Independence of X, from other random
choices.

9/30/10 CS 5633 Analysis of Algorithms 49

"<+ Calculating expectation

E[T(n)]= E{nzlxk(T (K)+T(n—-k-1)+ @(n))}

k=0

= SE[X(T(K) +T(n—k 1) + O(n))]
k=0

_ nfE[xk]- E[T (k) +T(n—k —1) + O(n)]

=0

n-1 n-1 n-1
SETK]+LISETM-k-1]+1 T o(N)
k=0 Ny—o Ny —o

=

n
Linearity of expectation; E[X,| = 1/n.,

9/30/10 CS 5633 Analysis of Algorithms

Calculating expectation

E[T (n)] = E{i X, (T(K)+T(n-k-1)+6(n))

::Z:E[Xk(T(k)+T(n—k—1)+@(n))]
::Z;E[xk].E[T(k)+T(n—k—1)+®(n)]
%:Z;E[T(k)h ZE[T(H k - l)]+nkZ;@
EEE[T(k)F@(”) Summations have
Nico Identical terms.

9/30/10 CS 5633 Analysis of Algorithms 51

-+ Hairy recurrence

n-1
EIT(M]=2 X E[T ()] +0(n)
k=2

(The k =0, 1 terms can be absorbed in the ®(n).)

Prove: E[T(n)] <anlogn for constant a > 0.

e Choose a large enough so that anlogn
dominates E[T(n)] for sufficiently small n > 2.

n-1
Use fact:) klogk <in’logn-in® (exercise).
k=2

9/27/11 CS 5633 Analysis of Algorithms 52

AAAAAAAAAA

9/27/11

Substltutlon method
E[T(n)]< Zak log k + ®(n)

Substitute inductive hypothesis.

CS 5633 Analysis of Algorithms

53

9/27/11

Substitution method

E[T(n)]< %niak log k +©(n)

< 2a(1 n’ log n—in2j+®(n)
n \ 2 8

Use fact.

CS 5633 Analysis of Algorithms

54

9/27/11

" Substitution method

E[T(n)]< %niak log k + ®(n)

< Za(l n® log n—ln2j+®(n)
n\2 8

=anlogn —(%— @(n)j

Express as desired — residual.

CS 5633 Analysis of Algorithms

55

9/27/11

Substitution method

E[T(n)]< %niak log k + ®(n)

2all , 1,
= n“logn——n° |+ ®(n
(2 g . j (n)

n

=anlogn —(?— @(n)j

<anlogn

If a IS chosen large enough so that
an/4 dominates the ®(n).

CS 5633 Analysis of Algorithms

56

AAAAAAAAAA

Qumksort In practice

 Quicksort Is a great general-purpose

sorting algorithm.

 Quicksort is typically over twice as fast

ds merge sort.

 Quicksort can benefit substantially from

code tuning.

 Quicksort behaves well even with

9/27/11

caching and virtual memory.

CS 5633 Analysis of Algorithms

57

== Average Runtime vs. Expected

Syl
, ,

= -

= Runtime
* Average runtime Is averaged over all inputs of a
deterministic algorithm.

» Expected runtime Is the expected value of the
runtime random variable of a randomized
algorithm. It effectively “averages” over all
sequences of random numbers.

 De facto both analyses are very similar.
However In practice the randomized algorithm
ensures that not one single input elicits worst case
behavior.

9/27/11 CS 5633 Analysis of Algorithms 58

