

CS 3343 – Fall 2011

Randomized Algorithms & Quicksort Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Deterministic Algorithms

Runtime for deterministic algorithms with input size *n*:

- Best-case runtime
 - \rightarrow Attained by one input of size n
- Worst-case runtime
 - \rightarrow Attained by one input of size n
- Average runtime
 - \rightarrow Averaged over all possible inputs of size n

Deterministic Algorithms: Insertion Sort

Best-case runtime: O(n), input [1,2,3,...,n]

- \rightarrow Attained by one input of size n
- Worst-case runtime: $O(n^2)$, input [n, n-1, ..., 2, 1]
 - \rightarrow Attained by one input of size n
- Average runtime : $O(n^2)$; see book for analysis
 - \rightarrow Averaged over all possible inputs of size n
 - •What kind of inputs are there?
 - How many inputs are there?

Average Runtime

- What kind of inputs are there?
 - Do [1,2,...,n] and [5,6,...,n+5] cause different behavior of Insertion Sort?
 - No. Therefore it suffices to only consider all permutations of [1,2,...,n].
- How many inputs are there?
 - There are n! different permutations of [1,2,...,n]

[2,3,1,4] 2

Average Runtime Insertion Sort: *n*=4

for j=2 to n {
 key = A[j]
 // insert A[j] into sorted sequen
 i=j-1
 while(i>0 && A[i]>key) {
 A[i+1]=A[i]
 i- }
 A[i+1]=key

[3,1,4,2] **3** [2,3,4,1] **3**

```
• Inputs: 4!=24
1,2,3,4]
                              [4,1,3,2]
               [4,1,2,3] 3
                              [1,4,3,2] 3
[2,1,3,4] 1
               [1,4,2,3] 2
                                            [3,4,2,1] 5
                                            [3,2,4,1] 4
[1,3,2,4] 1
               [1,2,4,3] 1
                              [1,3,4,2] 2
                              [4,3,1,2] 5 [4,2,3,1] 5
[3,1,2,4] 2
               [4,2,1,3] 4
[3,2,1,4] 3
               [2,1,4,3] 2
                              [3,4,1,2] 4 [2,4,3,1] 4
```

- Runtime is proportional to: 3 + **#times in while loop**
- Best: 3+0, Worst: 3+6=9, Average: 3+70/24 = 5.92

[2,1,3,4] 1

Average Runtime: Insertion Sort

- The average runtime averages runtimes over all n! different input permutations
- Disadvantage of considering average runtime:
 - There are still worst-case inputs that will have the worst-case runtime
 - Are all inputs really equally likely? That depends on the application
- ⇒ **Better:** Use a randomized algorithm

Randomized Algorithm: Insertion Sort

- Randomize the order of the input array:
 - Either prior to calling insertion sort,
 - or during insertion sort (insert random element)
- This makes the runtime depend on a probabilistic experiment (sequence of numbers obtained from random number generator)
 - ⇒Runtime is a random variable (maps sequence of random numbers to runtimes)
- **Expected runtime** = expected value of runtime random variable

Randomized Algorithm: Insertion Sort

- Runtime is independent of input order ([1,2,3,4] may have good or bad runtime, depending on sequence of random numbers)
- •No assumptions need to be made about input distribution
- No one specific input elicits worst-case behavior
- The worst case is determined only by the output of a random-number generator.
- ⇒ When possible use expected runtimes of randomized algorithms instead of average case analysis of deterministic algorithms

Quicksort

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).
- We are going to perform an expected runtime analysis on randomized quicksort

Quicksort: Divide and conquer

Quicksort an *n*-element array:

1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray $\le x \le$ elements in upper subarray.

- 2. Conquer: Recursively sort the two subarrays.
- 3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Partitioning subroutine

```
PARTITION(A, p, q) \triangleright A[p ... q]

x \leftarrow A[p] \triangleright \text{pivot} = A[p]

Running time

i \leftarrow p

\text{for } j \leftarrow p + 1 \text{ to } q

\text{do if } A[j] \leq x

\text{then } i \leftarrow i + 1

\text{exchange } A[i] \leftrightarrow A[j]

exchange A[p] \leftrightarrow A[i]

return i
```

Invariant: $x \le x \ge x$? $p \qquad i \qquad j \qquad q$

Pseudocode for quicksort

```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, p, q-1)
```

Initial call: QUICKSORT(A, 1, n)

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let T(n) = worst-case running time on an array of n elements.

Worst-case of quicksort

```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, q+1, r)
```

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$= \Theta(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n^2) \qquad (arithmetic series)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(0)$$
 $T(n-1)$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$Cn$$

$$T(0)$$

$$C(n-1)$$

$$T(0)$$

$$C(n-2)$$

$$D(n)$$

$$T(0)$$

$$C(n-2)$$

$$T(0)$$

$$T(0)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$\Theta\left(\sum_{k=1}^{n} k\right) = \Theta\left(n^{2}\right)$$

$$\Theta(1) \quad c(n-2)$$

$$height = n$$

$$\Theta(1) \quad \cdots \quad T(n) = \Theta(n) + \Theta(n^{2})$$

$$= \Theta(n^{2})$$

Best-case analysis

(For intuition only!)

If we're lucky, Partition splits the array evenly:

$$T(n) = 2T(n/2) + \Theta(n)$$

= $\Theta(n \log n)$ (same as merge sort)

What if the split is always $\frac{1}{10}$: $\frac{9}{10}$?

$$T(n) = T\left(\frac{1}{10}n\right) + T\left(\frac{9}{10}n\right) + \Theta(n)$$

What is the solution to this recurrence?

Analysis of "almost-best" case

T(n)

$$T\left(\frac{1}{10}n\right) \qquad T\left(\frac{9}{10}n\right)$$

Quicksort Runtimes

- Best case runtime $T_{\text{best}}(n) \in O(n \log n)$
- Worst case runtime $T_{worst}(n) \in O(n^2)$
- Worse than mergesort? Why is it called quicksort then?
- Its average runtime $T_{avg}(n) \in O(n \log n)$
- Better even, the expected runtime of randomized quicksort is $O(n \log n)$

Average Runtime

The average runtime $T_{avg}(n)$ for Quicksort is the average runtime over all possible inputs of length n.

- $T_{avg}(n)$ has to average the runtimes over all n! different input permutations.
- There are still worst-case inputs that will have a $O(n^2)$ runtime
- ⇒ **Better:** Use randomized quicksort

Randomized quicksort

IDEA: Partition around a *random* element.

- Running time is independent of the input order. It depends only on the sequence *s* of random numbers.
- No assumptions need to be made about the input distribution.
- No specific input elicits the worst-case behavior.
- The worst case is determined only by the sequence *s* of random numbers.

Randomized quicksort analysis

- T(n,s) = random variable for the running time of randomized quicksort on an input of size n, with sequence s of random numbers which are assumed to be independent.
- E(T(n)) = expected value of T(n,s), the

"expected runtime" of randomized quicksort.

$$T(n,s) = \begin{cases} T(0,s) + T(n-1,s) + \Theta(n) & \text{if } 0: n-1 \text{ split,} \\ T(1,s) + T(n-2,s) + \Theta(n) & \text{if } 1: n-2 \text{ split,} \\ \dots & \\ T(n-1,s) + T(0,s) + \Theta(n) & \text{if } n-1:0 \text{ split,} \end{cases}$$

Randomized quicksort analysis

For k = 0, 1, ..., n-1, define the *indicator* random variable

$$X_k(s) = \begin{cases} 1 & \text{if Partition generates a } k: n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases}$$

 $E[X_k] = \Pr\{X_k = 1\} = 1/n$, since all splits are equally likely, assuming elements are distinct.

Analysis (continued)

$$T(n,s) = \begin{cases} T(0,s) + T(n-1,s) + \Theta(n) & \text{if } 0: n-1 \text{ split,} \\ T(1,s) + T(n-2,s) + \Theta(n) & \text{if } 1: n-2 \text{ split,} \\ \dots & \\ T(n-1,s) + T(0,s) + \Theta(n) & \text{if } n-1: 0 \text{ split,} \end{cases}$$

$$= \sum_{k=0}^{n-1} X_k(s)(T(k,s) + T(n-k-1,s) + \dot{\Theta}(n))$$

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

Take expectations of both sides.

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$
$$= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$$

Linearity of expectation.

$$\begin{split} E[T(n)] &= E\bigg[\sum_{k=0}^{n-1} X_k \big(T(k) + T(n-k-1) + \Theta(n) \big) \bigg] \\ &= \sum_{k=0}^{n-1} E\big[X_k \big(T(k) + T(n-k-1) + \Theta(n) \big) \big] \\ &= \sum_{k=0}^{n-1} E\big[X_k \big] \cdot E\big[T(k) + T(n-k-1) + \Theta(n) \big] \end{split}$$

Independence of X_k from other random choices.

$$\begin{split} E[T(n)] &= E\bigg[\sum_{k=0}^{n-1} X_k \big(T(k) + T(n-k-1) + \Theta(n)\big)\bigg] \\ &= \sum_{k=0}^{n-1} E\big[X_k \big(T(k) + T(n-k-1) + \Theta(n)\big)\big] \\ &= \sum_{k=0}^{n-1} E\big[X_k\big] \cdot E\big[T(k) + T(n-k-1) + \Theta(n)\big] \\ &= \frac{1}{n} \sum_{k=0}^{n-1} E\big[T(k)\big] + \frac{1}{n} \sum_{k=0}^{n-1} E\big[T(n-k-1)\big] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \end{split}$$

Linearity of expectation; $E[X_k] = 1/n$.

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k \left(T(k) + T(n-k-1) + \Theta(n)\right)\right]$$

$$= \sum_{k=0}^{n-1} E\left[X_k \left(T(k) + T(n-k-1) + \Theta(n)\right)\right]$$

$$= \sum_{k=0}^{n-1} E\left[X_k\right] \cdot E\left[T(k) + T(n-k-1) + \Theta(n)\right]$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} E\left[T(k)\right] + \frac{1}{n} \sum_{k=0}^{n-1} E\left[T(n-k-1)\right] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)$$

$$= \frac{2}{n} \sum_{k=0}^{n-1} E\left[T(k)\right] + \Theta(n)$$
Summations have identical terms.

Hairy recurrence

$$E[T(n)] = \frac{2}{n} \sum_{k=2}^{n-1} E[T(k)] + \Theta(n)$$

(The k = 0, 1 terms can be absorbed in the $\Theta(n)$.)

Prove: $E[T(n)] \le an \log n$ for constant a > 0.

• Choose *a* large enough so that $an \log n$ dominates E[T(n)] for sufficiently small $n \ge 2$.

Use fact:
$$\sum_{k=2}^{n-1} k \log k \le \frac{1}{2} n^2 \log n - \frac{1}{8} n^2$$
 (exercise).

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \log k + \Theta(n)$$

Substitute inductive hypothesis.

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \log k + \Theta(n)$$

$$\le \frac{2a}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2\right) + \Theta(n)$$

Use fact.

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \log k + \Theta(n)$$

$$\le \frac{2a}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \right) + \Theta(n)$$

$$= an \log n - \left(\frac{an}{4} - \Theta(n) \right)$$

Express as *desired* – *residual*.

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \log k + \Theta(n)$$

$$= \frac{2a}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \right) + \Theta(n)$$

$$= an \log n - \left(\frac{an}{4} - \Theta(n) \right)$$

$$\le an \log n$$

if a is chosen large enough so that an/4 dominates the $\Theta(n)$.

Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from *code tuning*.
- Quicksort behaves well even with caching and virtual memory.

Average Runtime vs. Expected Runtime

- Average runtime is averaged over all inputs of a deterministic algorithm.
- Expected runtime is the expected value of the runtime random variable of a randomized algorithm. It effectively "averages" over all sequences of random numbers.
- De facto both analyses are very similar. However in practice the randomized algorithm ensures that not one single input elicits worst case behavior.