
CS 3343 – Fall 2011

More Divide & Conquer
Carola Wenk

Slides courtesy of Charles Leiserson with small

9/20/11 CS 3343 Analysis of Algorithms 1

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

Powering a numberPowering a number

Problem: Compute a n where n ∈ NProblem: Compute a n, where n ∈ N.

Naive algorithm: Θ(n).

Divide-and-conquer algorithm: (recursive squaring)

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

T(n) = T(n/2) + Θ(1) ⇒ T(n) = Θ(log n) .

9/20/11 CS 3343 Analysis of Algorithms 2

() () () () (g)

Fibonacci numbersFibonacci numbers
Recursive definition:Recursive definition:

F =
0 if n = 0;
1 if n = 1;Fn =
Fn–1 + Fn–2 if n ≥ 2.
1 if n = 1;

0 1 1 2 3 5 8 13 21 34 L

N i i l i h Ω(φ)Naive recursive algorithm: Ω(φ n)
(exponential time), where φ =
i h ld i

2/)51(+

9/20/11 CS 3343 Analysis of Algorithms 3

is the golden ratio.

Computing Fibonacci
numbers

Naive recursive squaring:Naive recursive squaring:
Fn = φ n/ rounded to the nearest integer.5

• Recursive squaring: Θ(log n) time• Recursive squaring: Θ(log n) time.
• This method is unreliable, since floating-point

arithmetic is prone to round off errorsarithmetic is prone to round-off errors.
Bottom-up (one-dimensional dynamic programming):
• Compute F0, F1, F2, …, Fn in order, forming

each number by summing the two previous.

9/20/11 CS 3343 Analysis of Algorithms 4

• Running time: Θ(n).

Convex HullConvex Hull

• Given a set of pins on a pinboard 4• Given a set of pins on a pinboard

• And a rubber band around them
3

4
5

• How does the rubber band look
when it snaps tight?

2
6

• We represent convex hull as the
sequence of points on the convex

0 1

sequence of points on the convex
hull polygon, in counter-clockwise
order.

9/20/11 CS 3343 Analysis of Algorithms 5

Convex Hull: Divide & ConquerConvex Hull: Divide & Conquer
• Preprocessing: sort the points by x-
coordinate

• Divide the set of points into two
sets A and B:sets A and B:

• A contains the left ⎣n/2⎦ points,

• B contains the right ⎡n/2⎤ points• B contains the right ⎡n/2⎤ points

•Recursively compute the convex
hull of A A B
•Recursively compute the convex
hull of B

A B

9/20/11 CS 3343 Analysis of Algorithms 6

• Merge the two convex hulls

MergingMerging
• Find upper and lower tangent

• With those tangents the convex hull
of A∪B can be computed from the
convex hulls of A and the convex hullconvex hulls of A and the convex hull
of B in O(n) linear time

A BA B

9/20/11 CS 3343 Analysis of Algorithms 7

Finding the lower tangentFinding the lower tangent
a = rightmost point of A

3

b = leftmost point of B
while T=ab not lower tangent to both

convex hulls of A and B do{ 3

4 24=b

5convex hulls of A and B do{
while T not lower tangent to
convex hull of A do{

1

a=25

3

1

5

6
7

a=a-1
}
while T not lower tangent to
convex hull of B do{ A B

0

1

0

7

can be checked right turn or
l ft t ?

convex hull of B do{
b=b+1

}
}

A B

9/20/11 CS 3343 Analysis of Algorithms 8

in constant time left turn?}

Convex Hull: RuntimeConvex Hull: Runtime
• Preprocessing: sort the points by x- O(n log n) just oncecoordinate

• Divide the set of points into two
sets A and B:

O(n log n) just once

O(1)sets A and B:

• A contains the left ⎣n/2⎦ points,

• B contains the right ⎡n/2⎤ points

()

• B contains the right ⎡n/2⎤ points

•Recursively compute the convex
hull of A

T(n/2)

•Recursively compute the convex
hull of B

T(n/2)

9/20/11 CS 3343 Analysis of Algorithms 9

• Merge the two convex hulls O(n)

Convex Hull: RuntimeConvex Hull: Runtime
• Runtime Recurrence:

T(n) = 2 T(n/2) + dn

• Solves to T(n) = Θ(n log n)

9/20/11 CS 3343 Analysis of Algorithms 10

Matrix multiplicationMatrix multiplication

Input: A = [a] B = [b]Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅ B. i, j = 1, 2,… , n.

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⋅
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

=
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

n

n

n

n

n

n

bbb
bbb

aaa
aaa

ccc
ccc

L

L

L

L

L

L

22221

11211

22221

11211

22221

11211

⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣
⎥
⎥

⎦
⎢
⎢

⎣ nnnnnnnnnnnn bbbaaaccc L

MOMM

L

MOMM

L

MOMM

212121

∑ ⋅=
n

kjikij bac

9/20/11 CS 3343 Analysis of Algorithms 11

=k
jj

1

Standard algorithmStandard algorithm

for i ← 1 to nfor i ← 1 to n
do for j ← 1 to n

do c ← 0do cij ← 0
for k ← 1 to n

do c ← c + a bdo cij ← cij + aik⋅ bkj

Running time = Θ(n3)Running time Θ(n)

9/20/11 CS 3343 Analysis of Algorithms 12

Divide-and-conquer algorithmDivide-and-conquer algorithm
IDEA:
n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:

⎤⎡⎤⎡⎤⎡ febasr
⎥⎦

⎤
⎢⎣

⎡⋅⎥⎦

⎤
⎢⎣

⎡=⎥⎦

⎤
⎢⎣

⎡
hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·g

8 recursive mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices

9/20/11 CS 3343 Analysis of Algorithms 13

u = c·f +d·h

Analysis of D&C algorithmAnalysis of D&C algorithm

T() 8 T(/2) + Θ(2)

b k ddi

T(n) = 8 T(n/2) + Θ(n2)

submatrices
submatrix size

work adding
submatrices

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3).

No better than the ordinary algorithm.

9/20/11 CS 3343 Analysis of Algorithms 14

Strassen’s ideaStrassen s idea
• Multiply 2×2 matrices with only 7 recursive mults. u t p y at ces w t o y 7 ecu s ve u ts.

P1 = a ⋅ (f – h)
P (+ b) h

r = P5 + P4 – P2 + P6
P + PP2 = (a + b) ⋅ h

P3 = (c + d) ⋅ e
P d ()

s = P1 + P2
t = P3 + P4

P + P P P

7 mults 18 adds/subs

P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P (b d) (+ h)

u = P5 + P1 – P3 – P7

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

9/20/11 CS 3343 Analysis of Algorithms 15

commutativity of mult!

Strassen’s ideaStrassen s idea
• Multiply 2×2 matrices with only 7 recursive mults. u t p y at ces w t o y 7 ecu s ve u ts.

P1 = a ⋅ (f – h)
P (+ b) h

r = P5 + P4 – P2 + P6
(+ d) (+ h)P2 = (a + b) ⋅ h

P3 = (c + d) ⋅ e
P d ()

= (a + d) (e + h)
+ d (g – e) – (a + b) h
+ (b d) (+ h)P4 = d ⋅ (g – e)

P5 = (a + d) ⋅ (e + h)
P (b d) (+ h)

+ (b – d) (g + h)
= ae + ah + de + dh

+ d d h bhP6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f)

+ dg –de – ah – bh
+ bg + bh – dg – dh

+ b
9/20/11 CS 3343 Analysis of Algorithms 16

= ae + bg

Strassen’s algorithmStrassen s algorithm
1. Divide: Partition A and B into

(n/2)×(n/2) submatrices. Form P-terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)×(n/2) submatrices.() ()

T(n) = 7 T(n/2) + Θ(n2)

9/20/11 CS 3343 Analysis of Algorithms 17

Analysis of StrassenAnalysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)T(n) 7 T(n/2) Θ(n)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlog 7).

The number 2.81 may not seem much smaller than
3, but because the difference is in the exponent, the 3, bu because e d e e ce s e e po e , e
impact on running time is significant. In fact,
Strassen’s algorithm beats the ordinary algorithm

B t t d t (f th ti l i t t l) Θ(2 376)

g y g
on today’s machines for n ≥ 30 or so.

9/20/11 CS 3343 Analysis of Algorithms 18

Best to date (of theoretical interest only): Θ(n2.376L).

ConclusionConclusion

Di id d i j f l• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master

th d (ti thi th)method (so practice this math).
• Can lead to more efficient algorithms

9/20/11 CS 3343 Analysis of Algorithms 19

