
CS 3343 – Fall 2011

More Divide & Conquer
Carola Wenk

Slides courtesy of Charles Leiserson with small

9/20/11 CS 3343 Analysis of Algorithms 1

Slides courtesy of Charles Leiserson with small 
changes by Carola Wenk



Powering a numberPowering a number

Problem: Compute a n where n ∈ NProblem: Compute a n, where n ∈ N.

Naive algorithm: Θ(n).

Divide-and-conquer algorithm: (recursive squaring)

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

T(n) = T(n/2) + Θ(1)  ⇒ T(n) = Θ(log n) . 
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Fibonacci numbersFibonacci numbers
Recursive definition:Recursive definition:

F =
0 if n = 0;
1 if n = 1;Fn =
Fn–1 + Fn–2 if n ≥ 2.
1 if n = 1;

0 1 1 2 3 5 8 13 21 34 L

N i i l i h Ω(φ )Naive recursive algorithm: Ω(φ n)
(exponential time), where φ =
i h ld i

2/)51( +

9/20/11 CS 3343 Analysis of Algorithms 3

is the golden ratio.



Computing Fibonacci 
numbers

Naive recursive squaring:Naive recursive squaring:
Fn = φ n/ rounded to the nearest integer.5

• Recursive squaring: Θ(log n) time• Recursive squaring: Θ(log n) time. 
• This method is unreliable, since floating-point 

arithmetic is prone to round off errorsarithmetic is prone to round-off errors.
Bottom-up (one-dimensional dynamic programming): 
• Compute F0, F1, F2, …, Fn in order, forming 

each number by summing the two previous.
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• Running time: Θ(n). 



Convex HullConvex Hull

• Given a set of pins on a pinboard 4• Given a set of pins on a pinboard

• And a rubber band around them
3

4
5

• How does the rubber band look 
when it snaps tight?

2
6

• We represent convex hull as the 
sequence of points on the convex

0 1

sequence of points on the convex 
hull polygon, in counter-clockwise 
order.
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Convex Hull: Divide & ConquerConvex Hull: Divide & Conquer
• Preprocessing: sort the points by x-
coordinate

• Divide the set of points into two 
sets A and B:sets A and B:

• A contains the left ⎣n/2⎦ points, 

• B contains the right ⎡n/2⎤ points• B contains the right ⎡n/2⎤ points 

•Recursively compute the convex 
hull of A A B
•Recursively compute the convex 
hull of B

A B
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• Merge the two convex hulls



MergingMerging 
• Find upper and lower tangent

• With those tangents the convex hull 
of A∪B can be computed from the 
convex hulls of A and the convex hullconvex hulls of A and the convex hull 
of B in O(n) linear time

A BA B

9/20/11 CS 3343 Analysis of Algorithms 7



Finding the lower tangentFinding the lower tangent 
a = rightmost point of A

3

b = leftmost point of B
while T=ab not lower tangent to both   

convex hulls of A and B do{ 3

4 24=b

5convex hulls of A and B do{
while T not lower tangent to 
convex hull of A do{

1

a=25

3

1

5

6
7

a=a-1
}
while T not lower tangent to 
convex hull of B do{ A B

0

1

0

7

can be checked right turn or 
l ft t ?

convex hull of B do{
b=b+1

}
}

A B
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in constant time left turn?}



Convex Hull: RuntimeConvex Hull: Runtime
• Preprocessing: sort the points by x- O(n log n) just oncecoordinate

• Divide the set of points into two 
sets A and B:

O(n log n)  just once

O(1)sets A and B:

• A contains the left ⎣n/2⎦ points, 

• B contains the right ⎡n/2⎤ points

( )

• B contains the right ⎡n/2⎤ points 

•Recursively compute the convex 
hull of A

T(n/2)

•Recursively compute the convex 
hull of B

T(n/2)
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• Merge the two convex hulls O(n)



Convex Hull: RuntimeConvex Hull: Runtime
• Runtime Recurrence:

T(n) = 2 T(n/2) + dn

• Solves to T(n) = Θ(n log n)
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Matrix multiplicationMatrix multiplication

Input: A = [a ] B = [b ]Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅ B. i, j = 1, 2,… , n.
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Standard algorithmStandard algorithm

for i ← 1 to nfor i ← 1 to n
do for j ← 1 to n

do c ← 0do cij ← 0
for k ← 1 to n

do c ← c + a bdo cij ← cij + aik⋅ bkj

Running time = Θ(n3)Running time  Θ(n )
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Divide-and-conquer algorithmDivide-and-conquer algorithm
IDEA:
n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:

⎤⎡⎤⎡⎤⎡ febasr
⎥⎦

⎤
⎢⎣

⎡⋅⎥⎦

⎤
⎢⎣

⎡=⎥⎦

⎤
⎢⎣

⎡
hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·g

8 recursive mults of (n/2)×(n/2) submatrices 
4 adds of (n/2)×(n/2) submatrices 
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u = c·f +d·h



Analysis of D&C algorithmAnalysis of D&C algorithm

T( ) 8 T( /2) + Θ( 2)

# b k ddi

T(n) = 8 T(n/2) + Θ(n2)

# submatrices
submatrix size

work adding 
submatrices

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3). 

No better than the ordinary algorithm.
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Strassen’s ideaStrassen s idea
• Multiply 2×2 matrices with only 7 recursive mults. u t p y at ces w t o y 7 ecu s ve u ts.

P1 = a ⋅ ( f – h)
P ( + b) h

r = P5 + P4 – P2 + P6
P + PP2 = (a + b) ⋅ h

P3 = (c + d) ⋅ e
P d ( )

s = P1 + P2
t = P3 + P4

P + P P P

7 mults 18 adds/subs

P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P (b d) ( + h)

u = P5 + P1 – P3 – P7

7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )

9/20/11 CS 3343 Analysis of Algorithms 15

commutativity of mult!



Strassen’s ideaStrassen s idea
• Multiply 2×2 matrices with only 7 recursive mults. u t p y at ces w t o y 7 ecu s ve u ts.

P1 = a ⋅ ( f – h)
P ( + b) h

r = P5 + P4 – P2 + P6
( + d) ( + h)P2 = (a + b) ⋅ h

P3 = (c + d) ⋅ e
P d ( )

= (a + d) (e + h) 
+ d (g – e) – (a + b) h
+ (b d) ( + h)P4 = d ⋅ (g – e)

P5 = (a + d) ⋅ (e + h)
P (b d) ( + h)

+ (b – d) (g + h)
= ae + ah + de + dh 

+ d d h bhP6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )

+ dg –de – ah – bh
+ bg + bh – dg – dh

+ b
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= ae + bg



Strassen’s algorithmStrassen s algorithm
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form P-terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices.( ) ( )

T(n) = 7 T(n/2) + Θ(n2)
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Analysis of StrassenAnalysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)T(n)  7 T(n/2)  Θ(n )

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlog 7).

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 3, bu because e d e e ce s e e po e , e
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 

B t t d t ( f th ti l i t t l ) Θ( 2 376 )

g y g
on today’s machines for n ≥ 30 or so.
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Best to date (of theoretical interest only): Θ(n2.376L).



ConclusionConclusion

Di id d i j f l• Divide and conquer is just one of several 
powerful techniques for algorithm design. 

• Divide-and-conquer algorithms can be 
analyzed using recurrences and the master 

th d ( ti thi th)method (so practice this math).
• Can lead to more efficient algorithms
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