CLIFFORD STEIN

Master Theorem

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

9/15/2011 CS 3343 Analysis of Algorithms 1

de3|gn paradlgm

1. Divide the problem (instance) into
subproblems.

a subproblems, each of size n/b

2. Conquer the subproblems by solving them
recursively.

3. Combine subproblem solutions.
Runtime for divide and combine is f(n)

9/15/2011 CS 3343 Analysis of Algorithms 2

ALGORITHMS

=+ Example: merge sort

1. Divide: Trivial.

2. Conquer: Recursively sort a=2
subarrays of size n/2=n/b

3. Combine: Linear-time merge, runtime
f(n)eO(n)
T(n) =2T(n/2) +O(N)~_

subproblems subproblem size \évr?g ‘;gﬁg’ﬁﬂmﬁg
\

T(n) =aT(n/b) + f(n)

9/15/2011 CS 3343 Analysis of Algorithms 3

“ &+ The master method

The master method applies to recurrences of
the form

T(n)=aT(n/b) +f(n),

wherea > 1,b > 1, and f 1s asymptotically
positive.

9/15/2011 CS 3343 Analysis of Algorithms

e Master Theorem
T(n) — aT(n/b) + f(n)

CASE 1:
f(n) = O(nlogpa-¢) = T(n) = ©(n'o9pa)

CASE 2:
f(n) = ©(nlo%2 Jogkn) = T(n) = O(n'°%a |ogk+in)

CASE 3.

f(n) — Q(nlogba+ g)
and af(n/b)<cf(n) r = T(n)=0(f(n))
for some constant ¢ < 1.

9/15/2011 CS 3343 Analysis of Algorithms 5

ALGORITHMS

\

\‘ \‘

How to apply the theorem

Compare f(n) with n'ogba;

1. f(n) = O(n'o%a-=) for some constant ¢ > 0.

« £ (n) grows polynomially slower than n'od?
(by an n¢ factor).

Solution: T(n) = ®(n'o%a)
2. f(n) = ®(n'°%? Jog“n) for some constant k > 0.

« f(n) and n'°%2 grow at similar rates.
Solution: T(n) = ®(n'°%a [og*tin) .

9/15/2011 CS 3343 Analysis of Algorithms 6

AAAAAAAAAA

. -
g e
Y

=7~ How to apply the theorem

3. f(n) = Q(n'o%a*2) for some constant ¢ > 0.

* f(n) grows polynomially faster than n'o%? (by
an n¢ factor),

and f(n) satisfies the regularity condition that
af(n/b) <cf(n) for some constant ¢ < 1.

Solution: T(n) = O®(f(n)).

9/15/2011 CS 3343 Analysis of Algorithms 7

AAAAAAAAAA

""" Example: merge sort

1\\‘ \‘

1. Divide: Trivial.
2. Conguer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) =2T(n/2) + O(N)~—__

Sprl’0b|ems{Ioproblem kize Work dividing
and combining

nlodbad = nlog22 = nl = n = Case 2 (k = 0)
= T(n) =6(nlogn).

9/15/2011 CS 3343 Analysis of Algorithms 8

ALGORITHMS

=1 Example: binary search

T(n) =1T(n/2) +B(1)

subproblems work dividing
subproblem size and combining

nlodbd = nlogzl = n0 =1 = Case 2 (k = 0)
= T(n) = O(logn) .

9/15/2011 CS 3343 Analysis of Algorithms

Exam ples

Ex. T(n) =4T(n/2) + sqgrt(n)
a=4,b=2=nlgwa=n? f(n) =sqrt(n).
Case 1: f(n) = O(n?-¢) for e = 1.5.

- T(n) = ©(n?).

Ex. T(n) =4T(n/2) + n?
a=4,b=2=nlga=n? f(n) =n?
Case 2: f(n) = ®(n?log®n), that is, k = 0.
- T(n) = ©(n%logn).

9/15/2011 CS 3343 Analysis of Algorithms

10

ALGORITHMS

o~ Examples

EX. T(n) AT(n/2) + n3
a=4,b=2=nlga=n? f(n) =ns
Case 3:f(n)=Q(n**¢) fore=1
and 4(n/2)? < cn?(reg. cond.) for c = 1/2.
s T(n) = B(nd).

Ex. T(n) = 4T(n/2) + n4/logn
a=4,b=2= nla=n2 f(n) =n?logn.
Master method does not apply. In particular,
for every constant € > 0, we have log n € o(n?).

9/15/2011 CS 3343 Analysis of Algorithms 11

