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Merge sortMerge sort

MERGE-SORT (A[1 . . n])
1. If n = 1, done.
2. MERGE-SORT (A[ 1 . . ⎡n/2⎤ ])
3. MERGE-SORT (A[ ⎡n/2⎤+1 . . n ])( [ ])
4. “Merge” the 2 sorted lists.

Key subroutine: MERGE
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Merging two sorted arraysMerging two sorted arrays
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Time dn ∈ Θ(n) to merge a total 
of n elements (linear time)
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of n elements (linear time).



Analyzing merge sortAnalyzing merge sort

MERGE-SORT (A[1 . . n])
1. If n = 1, done.

T(n)
d0

2. MERGE-SORT (A[ 1 . . ⎡n/2⎤ ])
3. MERGE-SORT (A[ ⎡n/2⎤+1 . . n ])

T(n/2)
T(n/2)

4. “Merge” the 2 sorted lists.dn

Sloppiness: Should be T( ⎡n/2⎤ ) + T( ⎣n/2⎦ ) , 
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but it turns out not to matter asymptotically.



Recurrence for merge sortRecurrence for merge sort

d if n = 1;
T(n) =

d0 if n  1;
2T(n/2) + dn if n > 1.

• But what does T(n) solve to? I.e., is it 
O(n) or O(n2) or O(n3) or …?
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Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n)  2T(n/2)  dn, where d  0 is constant.

T(n)
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Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n)  2T(n/2)  dn, where d  0 is constant.

dn

T(n/2) T(n/2)
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Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n)  2T(n/2)  dn, where d  0 is constant.

dn

T( /4) T( /4) T( /4) T( /4)

dn/2 dn/2

T(n/4) T(n/4) T(n/4) T(n/4)
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Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n)  2T(n/2)  dn, where d  0 is constant.

dn dn

d /4 d /4 d /4 d /4

dn/2 dn/2

h = log n

dn

ddn/4 dn/4 dn/4 dn/4h = log n dn

…

d0

…

#leaves = n d0n
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Total dn log n + d0n



ConclusionsConclusions

M i Θ( l ) i• Merge sort runs in Θ(n log n) time.
• Θ(n log n) grows more slowly than Θ(n2).
• Therefore, merge sort asymptotically beats 

insertion sort in the worst case.
• In practice, merge sort beats insertion sort 

for n > 30 or so. (Why not earlier?)( y )
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Recursion-tree methodRecursion-tree method

• A recursion tree models the costs (time) of a• A recursion tree models the costs (time) of a 
recursive execution of an algorithm.

• The recursion tree method can be unreliable• The recursion-tree method can be unreliable, 
just like any method that uses ellipses (…).

• It is good for generating guesses of what the• It is good for generating guesses of what the 
runtime could be. 

But: Need to verify that the guess is right.
→ Induction (substitution method)
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Substitution methodSubstitution method
The most general method to solve a recurrenceThe most general method to solve a recurrence 
(prove O and Ω separately):

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of 

induction)
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