
CS 3343 – Fall 2011

Merge Sort
Carola Wenk

Slides courtesy of Charles Leiserson with small

9/8/11 CS 3343 Analysis of Algorithms 1

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

Merge sortMerge sort

MERGE-SORT (A[1 . . n])
1. If n = 1, done.
2. MERGE-SORT (A[1 . . ⎡n/2⎤])
3. MERGE-SORT (A[⎡n/2⎤+1 . . n])([])
4. “Merge” the 2 sorted lists.

Key subroutine: MERGE

9/8/11 CS 3343 Analysis of Algorithms 2

Merging two sorted arraysMerging two sorted arrays

20 12 20 12 20 12 20 12 20 12 20 1220

13

12

11

20

13

12

11

20

13

12

11

20

13

12

11

20

13

12

11

20

13

12

7

2

9

1

7

2

9 7 9 9

1 2 7 9 11 12

Time dn ∈ Θ(n) to merge a total
of n elements (linear time)

9/8/11 CS 3343 Analysis of Algorithms 3

of n elements (linear time).

Analyzing merge sortAnalyzing merge sort

MERGE-SORT (A[1 . . n])
1. If n = 1, done.

T(n)
d0

2. MERGE-SORT (A[1 . . ⎡n/2⎤])
3. MERGE-SORT (A[⎡n/2⎤+1 . . n])

T(n/2)
T(n/2)

4. “Merge” the 2 sorted lists.dn

Sloppiness: Should be T(⎡n/2⎤) + T(⎣n/2⎦) ,

9/8/11 CS 3343 Analysis of Algorithms 4

but it turns out not to matter asymptotically.

Recurrence for merge sortRecurrence for merge sort

d if n = 1;
T(n) =

d0 if n 1;
2T(n/2) + dn if n > 1.

• But what does T(n) solve to? I.e., is it
O(n) or O(n2) or O(n3) or …?

9/8/11 CS 3343 Analysis of Algorithms 5

() () ()

Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n) 2T(n/2) dn, where d 0 is constant.

T(n)

9/8/11 CS 3343 Analysis of Algorithms 6

Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n) 2T(n/2) dn, where d 0 is constant.

dn

T(n/2) T(n/2)

9/8/11 CS 3343 Analysis of Algorithms 7

Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n) 2T(n/2) dn, where d 0 is constant.

dn

T(/4) T(/4) T(/4) T(/4)

dn/2 dn/2

T(n/4) T(n/4) T(n/4) T(n/4)

9/8/11 CS 3343 Analysis of Algorithms 8

Recursion treeRecursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.Solve T(n) 2T(n/2) dn, where d 0 is constant.

dn dn

d /4 d /4 d /4 d /4

dn/2 dn/2

h = log n

dn

ddn/4 dn/4 dn/4 dn/4h = log n dn

…

d0

…

#leaves = n d0n

9/8/11 CS 3343 Analysis of Algorithms 9

Total dn log n + d0n

ConclusionsConclusions

M i Θ(l) i• Merge sort runs in Θ(n log n) time.
• Θ(n log n) grows more slowly than Θ(n2).
• Therefore, merge sort asymptotically beats

insertion sort in the worst case.
• In practice, merge sort beats insertion sort

for n > 30 or so. (Why not earlier?)(y)

9/8/11 CS 3343 Analysis of Algorithms 10

Recursion-tree methodRecursion-tree method

• A recursion tree models the costs (time) of a• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion tree method can be unreliable• The recursion-tree method can be unreliable,
just like any method that uses ellipses (…).

• It is good for generating guesses of what the• It is good for generating guesses of what the
runtime could be.

But: Need to verify that the guess is right.
→ Induction (substitution method)

9/8/11 CS 3343 Analysis of Algorithms 11

()

Substitution methodSubstitution method
The most general method to solve a recurrenceThe most general method to solve a recurrence
(prove O and Ω separately):

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)

2. Verify by induction (inductive step).
3. Solve for O-constants n0 and c (base case of

induction)

9/8/11 CS 3343 Analysis of Algorithms 12

