Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

11/2/10 CS 3343 Analysis of Algorithms

AAAAAAAAAA

=~ Graphs (review)

Definition. A directed graph (digraph)
G = (V, E) 1s an ordered pair consisting of
e a set \V of vertices (singular: vertex),
caset E — V xV of edges.

In an undirected graph G = (V, E), the edge
set E consists of unordered pairs of vertices.

In either case, we have |[E| = O(|V|?).
Moreover, If G Is connected, then [E|>|V]| - 1.

(Review CLRS, Appendix B.4 and B.5.)

11/2/10 CS 3343 Analysis of Algorithms

ALGORITHMS

@3 Adjacency-matrix
~ 0 representation

The adjacency matrix of a graph G = (V, E), where
V=41 2,...,n}isthematrix A[1..n,1..n]

iven b
SRR Al 3 _{1 if (i,]) e E,
M= 0 06) ¢ E

All 2 3 4
22— 1lo11o0 O(|V|?) storage
' 210 0 1 0 =dense
(3%—4) 3|0 0 0 0 representation.
410 0 1 0

11/2/10 CS 3343 Analysis of Algorithms 3

ALGORITHMS

Adjacency-list representation

Anadjacency list of a vertex v € V Is the list Adj[V]
of vertices adjacent to v.

e
Y i

Adj[1] = {2, 3}
9'0 Adi[2] = {3}

Adi[3] = {3
9 9 Adj[4] = {3}

For undirected graphs, |Adj[v]| = degree(V).
For digraphs, | Adj[v] | = out-degree(v).

11/2/10 CS 3343 Analysis of Algorithms 4

AAAAAAAAAA

=~ Adjacency-list representation

Handshaking Lemma:
Every edge is counted twice
 For undirected graphs:
>y degree(v) = 2|E]
* For digraphs:
> ey IN-degree(v) + X, out-degree(v) =2 | E |

= adjacency lists use ©(|V| + |E|) storage

—> a sparse representation

— We usually use this representation,
unless stated otherwise

11/2/10 CS 3343 Analysis of Algorithms

ALGORITHMS

m

\.
1\‘\‘

11/2/10

~ Graph Traversal

Let G=(V,E) be a (directed or undirected)
graph, given in adjacency list representation.

VI=n,|E[=
A graph traversal visits every vertex:

 Breadth-first search (BFS)
e Depth-first search (DFS)

CS 3343 Analysis of Algorithms

AAAAAAAAAA

Breadth First Search (BFS)

BFS(G (V,E))
Mark all vertices in G as “unvisited” // time=0
Initialize empty queue Q
for each vertex v e V do
If v Is unvisited

visit v // time++
Q.enqueue(V)
BFS iter(G)

BFS iter(G)
while Q is non-empty do
v = Q.dequeue()
for each w adjacent to v do
If w Is unvisited

visitw // time++
Add edge (v,w)to T
Q.enqueue(w)

11/2/10 CS 3343 Analysis of Algorithms 7

AAAAAAAAAA

w— Example of breadth-first
~7 search

11/2/10 CS 3343 Analysis of Algorithms

AAAAAAAAAA

Example of breadth-first
~*" search

1111111

AAAAAAAAAA

Example of breadth-first
~*" search

1111111

AAAAAAAAAA

g Example of breadth-first
~ " gsearch

1111111

11/2/10 CS 3343 Analysis of Algorithms

11/2/10 CS 3343 Analysis of Algorithms

AAAAAAAAAA

b

\ Breadth-First Search (BFS)

O(n)
0(1)

Oo(n) |

without

(

BFS iter
I

BFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0

Initialize empty queue Q

for each vertex v e V
If v Is unvisited

visit v // time++

Q.enqueue(V)
BFS iter(G)

do

BFS iter(G)

—— while Q is non-empty do

11/2/10

om) <<

O(deg(v)),

(

\

v = Q.dequeue()
for each w adjacent to v do
If w Is unvisited
visitw // time++
Add edge (v,w)to T
Q.enqueue(w)

S~

CS 3343 Analysis of Algorithms 20

=« BFS runtime

1\\\ o

 Each vertex Is marked as unvisited in the beginning = O(n) time
 Each vertex is marked at most once, enqueued at most once,

and therefore dequeued at most once

* The time to process a vertex is proportional to the size of its
adjacency list (its degree), since the graph is given in adjacency list
representation

= O(m) time

e Total runtime is O(n+m) = O(|V| + |E|)

11/2/10 CS 3343 Analysis of Algorithms 21

AAAAAAAAAA

1\\ : .:.‘:'.:'

11/2/10

Depth -First Search (DFS)

DFS(G=(V.E))

for each vertex v € V. do
If v IS unvisited
DFS_rec(G,v)

Mark all vertices in G as “unvisited” // time=0

DFS rec(G, v)
visitv // d[v]=++time
for each w adjacent to v do
If w Is unvisited
Add edge (v,w) totree T
DFS _rec(G,w)
/] flv]=++time

CS 3343 Analysis of Algorithms

22

ALGORITHMS
l\ [
5 i

d/f
0/-

Store edges In

n;:abcdefgh i predecessorarray
- d

11/2/10 CS 3343 Analysis of Algorithms

« Example of depth-first search

23

ALGORITHMS

d/f
- ()
1/-
0
Store edges In
n:abcdefghi predecessorarray
-ab

11/2/10 CS 3343 Analysis of Algorithms

“ .~ Example of depth-first search

24

ALGORITHMS

pgiin e
M
Lany

d/f
0/-

Store edges In
n;:abcdefgh i predecessorarray
-ab

11/2/10 CS 3343 Analysis of Algorithms

« Example of depth-first search

25

ALGORITHMS

~
DA

d/f
0/-

Store edges In
n;:abcdefgh i predecessorarray
-ab b

11/2/10 CS 3343 Analysis of Algorithms

“ .~ Example of depth-first search

26

ALGORITHMS

ny \ Sitites

Store edges In
n;abcdefghi predecessorarray
-ab b &€

11/2/10 CS 3343 Analysis of Algorithms

“ &~ Example of depth-first search

27

ALGORITHMS

ny \ Sitites

Store edges In
n;abcdefghi predecessorarray
-ab b e ¢

11/2/10 CS 3343 Analysis of Algorithms

“ &~ Example of depth-first search

28

ALGORITHMS

=~ Example of depth-first search

d/f
0/-
1/-
6/-
2/3
Store edges In
n;abcdefghi predecessorarray

I
QD
O
o D

el g

11/2/10 CS 3343 Analysis of Algorithms 29

ALGORITHMS

=" Example of depth-first search

d/f
0/- (h)7/8

Store edges In
predecessor array

11/2/10 CS 3343 Analysis of Algorithms 30

ALGORITHMS

=" Example of depth-first search

d/f
0/- { h)7/8

Store edges In
predecessor array

11/2/10 CS 3343 Analysis of Algorithms 31

ALGORITHMS

=" Example of depth-first search

d/f
0/- { h) 7/8

Store edges In
predecessor array

11/2/10 CS 3343 Analysis of Algorithms 32

ALGORITHMS

=" Example of depth-first search

Store edges In
predecessor array

11/2/10 CS 3343 Analysis of Algorithms 33

ALGORITHMS

=" Example of depth-first search

d/f 10/-
0/- {h)7/8

Store edges In
predecessor array

11/2/10 CS 3343 Analysis of Algorithms 34

ALGORITHMS

=" Example of depth-first search

d/f 10/13
0/- { h) 7/8

Store edges In
predecessor array

11/2/10 CS 3343 Analysis of Algorithms 35

ALGORITHMS

=" Example of depth-first search

d/f 10/13
0/- h) 7/8

Store edges In
predecessor array

11/2/10 CS 3343 Analysis of Algorithms 36

ALGORITHMS

=" Example of depth-first search

d/f 10/13
0/- h) 7/8

Store edges In
predecessor array

11/2/10 CS 3343 Analysis of Algorithms 37

ALGORITHMS

H% Example of depth-first search

Store edges In
predecessor array

11/2/10 CS 3343 Analysis of Algorithms 38

AAAAAAAAAA

"% Example of depth-first search

e
\,,
"y

Store edges In
predecessor array

11/2/10 CS 3343 Analysis of Algorithms 39

ALGORITHMS

=~ Depth-First Search (DFS)

\
\

1\\‘ \‘
DFS(G=(V,E))
O(n) Mark all vertices in G as “unvisited” // time=0
0 (for each vertex v e V do
_(n)) If v IS unvisited
without
DFS_rec| DFS_rec(G,v)
DFS rec(G, v)
o(1) visit v // d[v]=++time
’ for each w adjacent to v do
If w iIs unvisited
O(deg(v)) | Add edge (v,w) to tree T
without DFS rec(G,w)
recursive call)
* /] flv]=++time

= With Handshaking Lemma, all recursive calls are O(m), for

a total of O(n + m) runtime
11/2/10 CS 3343 Analysis of Algorithms

40

\-‘;:;"" DFS runtime

ARY b o

 Each vertex Is visited at most once = O(n) time

* The body of the for loops (except the recursive call) take constant
time per graph edge

o All for loops take O(m) time

e Total runtime is O(n+m) = O(|V| + |E|)

11/2/10 CS 3343 Analysis of Algorithms 41

AAAAAAAAAA

2/3 Edge U—V is ae

* tree edge If it 1s part of the depth-first forest.

, If U connects to an ancestor v in a depth-
flrst tree. It holds d(u)>d(v) and f(u)<f(v).
e forward edge, If it connects u to a descendant v in
a depth-first tree. It holds d(u)<d(v).
e Cross edge, If it Is any other edge. It holds
d(u)>d(v) and f(u)>f(v).

11/2/10 CS 3343 Analysis of Algorithms 42

~ o~ Paths, Cycles, Connectivity

Let G=(V,E) be a directed (or undirected) graph

e A path from v, to v, in G is a sequence of vertices v,, V,,...,v, such that
(ViiVeiy) €E (Or {V;,Viigy b €E If Gis undirected) forall ie{1,... k-1}.

« Apathis simple if all vertices in the path are distinct.

e Apathv,,v,,...,v, formsa cycle if v,=v, .

« A graph with no cycles is acyclic.

* An undirected acyclic graph is called a tree. (Trees do not have to
have a root vertex specified.)

A directed acyclic graph is a DAG. (A DAG can have undirected
cycles if the direction of the edges is not considered.)

« An undirected graph is connected if every pair of vertices Is connected
by a path. A directed graph is strongly connected if for every pair
u,veV there is a path from u to v and there is a path from v to u.

 The (strongly) connected components of a graph are the equivalence

classes of vertices under this reachability relation.
11/2/10 CS 3343 Analysis of Algorithms 43

ALGORITHMS

Ty —

i‘ DAG Theorem

AR \

Theorem: A directed graph G is acyclic
< a depth-first search of G yields no back edges.
Proof: §\o
“="": Suppose there is a back edge (u,v). Then by o
definition of a back edge there would be a cycle. ©
“«<=": Suppose G contains a cycle c. Let v be the first [%\O
vertex to be discovered in ¢, and let u be the
preceding vertex in ¢. Vv Is an ancestor of u in the
depth-first forest, hence (u,v) is a back edge.

11/2/10 CS 3343 Analysis of Algorithms 44

AAAAAAAAAA

:f‘\'\ ",_ “' Topological Sort

Topologically sort the vertices of a directed acyclic

graph (DAG):

e Determine f: V — {1, 2, ..., |V|} such that (u, v) € E
= f(u) <f(v).

VOO HOEE

11/2/10 CS 3343 Analysis of Algorithms 45

\-‘;:;"'_' Topological Sort Algorithm

1\\\ pnes

e Store vertices with in-degree 0 in a queue Q.

e While Q Is not empty
* Dequeue vertex v, and give it the next number
 Decrease in-degree of all adjacent vertices by 1
* Enqueue all vertices with in-degree 0

Q:a1b1C’e’d1f1g1i1h

11/2/10 CS 3343 Analysis of Algorithms 46

AAAAAAAAAA

e

~

o oy
g :
1\\‘ \‘

« Topological Sort Runtime

Runtime:

O(|V|+|E|) because every edge Is touched once, and

every vertex Is enqueued and dequeued exactly
once

11/2/10

CS 3343 Analysis of Algorithms

47

AAAAAAAAAA

1\\ : .:.‘:'.:'

11/2/10

Depth -First Search Revisited

DFS(G=(V.E))

for each vertex v € V. do
If v IS unvisited
DFS_rec(G,v)

Mark all vertices in G as “unvisited” // time=

0

DFS rec(G, v)
visitv // d[v]=++time
for each w adjacent to v do
If w Is unvisited
Add edge (v,w) totree T
DFS _rec(G,w)
/] flv]=++time

CS 3343 Analysis of Algorithms

48

AAAAAAAAAA

:m Algorlthm

e Call DFS on the directed acyclic graph G=(V,E)
—> Finish time for every vertex
* Reverse the finish times (highest finish time
becomes the lowest finish time,...)
= Valid functionf ’: V — {1, 2, ..., | V |} such that
(u,v) e E=1’(u)<f’ (v)

Runtime: O(|V|+|E|)

11/2/10 CS 3343 Analysis of Algorithms 49

11/2/10

CS 3343 Analysis of Algorithms

50

AAAAAAAAAA

2/3 Edge U—V is ae

* tree edge If it 1s part of the depth-first forest.

, If U connects to an ancestor v in a depth-
flrst tree. It holds d(u)>d(v) and f(u)<f(v).
e forward edge, If it connects u to a descendant v in
a depth-first tree. It holds d(u)<d(v).
e Cross edge, If it Is any other edge. It holds
d(u)>d(v) and f(u)>f(v).

11/2/10 CS 3343 Analysis of Algorithms 51

ALGORITHMS

m

sy, DFS Based Top. Sort Correctness

1\\‘

* Need to show that for any (u, v) € E holds f (v) <f (u).
(since we consider reversed finish times)

 Consider exploring edge (u, v) in DFS:
* v cannot be visited and unfinished (and hence an ancestor in
the depth first tree), since then (u,v) would be a back edge
(which by the DAG lemma cannot happen).
o If v has not been visited yet, it becomes a descendant of u, and
hence f(v)<f(u) . (tree edge)
o If v has been finished, f(v) has been set, and u is still being
explored, hence f(u)>f(v) (forward edge, cross edge) .

11/2/10 CS 3343 Analysis of Algorithms 52

=« Topological Sort Runtime

1\\‘

Runtime:

 O(|V|+|E|) because every edge is touched once, and
every vertex Is enqueued and dequeued exactly
once

 DFS-based algorithm: O(|V| + |E|)

11/2/10 CS 3343 Analysis of Algorithms

53

