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ALGORITHMS
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“ & Minimum spanning trees

Input: A connected, undirected graph G = (V, E)

with weight functionw : E — R.

 For simplicity, assume that all edge weights are
distinct. (CLRS covers the general case.)

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

w(T)= > w(u,v).

(u,v)eTl
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algorlthms

(D .
Greedy-choice property
A locally optimal choice

IS globally optimal.

N

Theorem. Let T be the MST of G = (V, E),
and let A — V. Suppose that (u, v) € E Is the

least-weight edge connecting Ato V \ A.
Then, (u,v) e T.
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ALGORITHMS

=~ Proof of theorem
Proof. Suppose (u, v) ¢ T. Cut and paste.

(u, v) = least-weight edge
o cV\A connecting A to V \ A
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o € A

e c V\A (u, v) = least-weight edge

connecting Ato V\ A
Consider the unique simple path fromutovin T.
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=~ Proof of theorem

Proof. Suppose (u, v) ¢ T. Cut and paste.

T: :\

o € A
o cV\A

(u, v) = least-weight edge
connecting Ato V\ A

Consider the unique simple path fromutovin T.

Swap (u, v) with the first edge on this path that
connects a vertex In A to a vertex in V \ A.
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=~ Proof of theorem

Pr.oc.)f. Suppose (u, v) ¢ T. Cut and paste.

T" :\
o € A /

o cV\A

(u, v) = least-weight edge
connecting Ato V\ A

Consider the unique simple path fromutovin T.

Swap (u, v) with the first edge on this path that
connects a vertex In A to a vertex in V \ A.

A lighter-weight spanning tree than T results.

11/9/10 CS 3343 Analysis of Algorithms 8




ALGORITHMS

“ 4~ Prim’s algorithm

IDEA: Maintain \V \ A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.

Q«V
key[v] <~ oo forallv e V
key[s] «— O for some arbitrary s € V
while Q = &
do u < EXTRACT-MIN(Q)
for each v € Adj[u]
doif v e Q and w(u, v) < key|[v]
then key[v] < w(u,v) © DECREASE-KEY
r[v] <« u

At the end, {(v, =[v])} forms the MST.
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U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u
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U <~ EXTRACT-MIN(Q)
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U <~ EXTRACT-MIN(Q)
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U <~ EXTRACT-MIN(Q)
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U <~ EXTRACT-MIN(Q)
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U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u
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" Example of Prim’s algorithm

fiC\A 0 12
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U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u
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1 < EXTRACT-MIN(Q) 3
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u
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1 < EXTRACT-MIN(Q) 3
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u
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"+ Example of Prim’s algorithm
o € A
e cV\A %
:
% 0

1 < EXTRACT-MIN(Q) 3
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u
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"+ Example of Prim’s algorithm
o € A
o cV\A %

% boe

1 < EXTRACT-MIN(Q) 3
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u
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N Analysis of Prim

C Q«V
O(V]) 2 key[v] <~ woforallv e V
total | yey[s] < 0 for some arbitrary s < V
- while Q # &
do u <— EXTRACT-MIN(Q)
V] )  for each v € Adj[u]
times | degree(u) do if v e Q and w(u, v) < key[v]
times then key[v] < w(u, V)
N

_ n[v] < u /

Handshaking Lemma = O(|E|) implicit Decrease-KEY’S.
Time = O(|V]) Texrract-Min T OUED Tpecrease-Key

11/9/10
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< Analysis of Prim (continued)

Time = O(|V]) Texrract-min T CUED Tpecrease-kEY

Q  TextractMiN TDecrease-key  Total

array o(V|) O(1) O(IV|?)

binary
heap

Fibonacci O(log|V]) O(1) O(E| + |V]|log|V])
heap  amortized amortized  worst case

O(log|V[)  O(log|V]) | O([E[log|V])

11/9/10 CS 3343 Analysis of Algorithms 24



ALGORITHMS
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= 4~ Kruskal’s algorithm

1\\

|DEA (again greedy):
Repeatedly pick edge with smallest weight as long as It
does not form a cycle.

 The algorithm creates a set of trees (a forest)
 During the algorithm the added edges merge the trees
together, such that in the end only one tree remains

 The correctness of this greedy strategy Is not obvious
and needs to be proven. (Proof skipped here.)
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f{@' Example of Kruskal’s algorithm

S={1a}.{0b}.1c}1d}.{e}
1o {h{ah{h}}

- MST edges
a setrepr. 6

14

Every node Is a single tree.
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{}' Example of Kruskal’s algorithm

1o {a} {eh}}

- MST edges
a setrepr. 6

14

Edge 3 merged two singleton trees.
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ALGORITHMS

c{@l '1 Example of Kruskal’s algorithm

W

S={{a}.{d}{f}. {a}
— MST edges : 1o 1&h}{b,c}}
a setrepr.
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c{?” Example of Kruskal’s algorithm

W

- MST edges
a setrepr.

11/9/10

S={ 1)1}, 19}
12 {§1 h}1 {Q, b1 C}}

CS 3343 Analysis of Algorithms

29



AAAAAAAAAA

" Example of Kruskal’s algorithm

12 &hh{a,b,c 1}}

- MST edges
a setrepr.
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' Example of Kruskal’s algorithm

19 {e,h,a,b,c, }}

- MST edges
a setrepr.

Edge 8 merged the two bigger trees.
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' Example of Kruskal’s algorithm

S={{a}
19 {e,h,a,b,c f,d}}

- MST edges
a setrepr.
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' - Example of Kruskal’s algorithm

‘\\‘

S={ {9}
— MST edges 1» {ehab.cfd}}
e A

Skip edge 10 as It would cause a cycle.
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‘\, ' Example of Kruskal’s algorithm

S={{a}
19 {e,h,a,b,c f,d}}

- MST edges
a setrepr.

Skip edge 12 as it would cause a cycle.
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‘\, ' Example of Kruskal’s algorithm

S={{a}
19 {e,h,a,b,c f,d}}

- MST edges
a setrepr. 6

Skip edge 14 as it would cause a cycle.
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- ' Example of Kruskal’s algorithm
S={{e,h,a,b,c, 1 d g}}

- MST edges
a setrepr.
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(Unlon Flnd)

* Maintains a dynamic collection of pairwise-disjoint
sets S =4{S., S,, ..., S, }.

 Each set S, has one element distinguished as the
representative element.

e Supports operations:

O(1)  « MAKE-SET(X): adds new set {x} to S
O(a(n)) « UNION(X, Y): replaces sets S,, S, with S, U S,

O(a(n))  FIND-SET(X): returns the representatlve of the
set S, containing element x

* 1 <a(n) <log*(n) <log(log(n)) <log(n)
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H Kruskal’s algorithm

1\\

|DEA. Repeatedly pick edge with smallest
welght as long as it does not form a cycle.

S« @ © Swill contain all MST edges

O(Vl)  foreachv €V do MAKE-SET(V)
O(|E[loglE[) Sort edges of E in non-decreasing order according to w

O(|E|) For each (u,v) € E taken in this order do

'if FIND-SET(u) # FIND-SET(v) © u,v in different trees
O(a(V])) & S« Su{uv)}

. UNION(u,v) = Edge (u,v) connects the two trees

Runtime: O(|V|+|E|log|E|+|E|a(|V])) = O(|E| log |E|)
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e I\/IST algorithms

\'\“’

* Prim’s algorithm:
* Maintains one tree
* Runs in time O(|E| log |V]), with binary heaps.

 Kruskal’s algorithm:
* Maintains a forest and uses the disjoint-set
data structure
* Runs in time O(|E| log |E|)

* Best to date: Randomized algorithm by Karger,
Klein, Tarjan [1993]. Runs in expected time
O(V| + |E[)
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