Minimum Spanning Trees

Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

11/9/10 CS 3343 Analysis of Algorithms

ALGORITHMS

v—

“ & Minimum spanning trees

Input: A connected, undirected graph G = (V, E)

with weight functionw : E — R.

 For simplicity, assume that all edge weights are
distinct. (CLRS covers the general case.)

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

w(T)= > w(u,v).

(u,v)eTl

11/9/10 CS 3343 Analysis of Algorithms 2

AAAAAAAAAA

®T¥ Example of MST

0 12
) 5 9
1% q / 15 Q
L
3% 10

11/9/10 CS 3343 Analysis of Algorithms

AAAAA

11/9/10

IIIII

algorlthms

(D .
Greedy-choice property
A locally optimal choice

IS globally optimal.

N

Theorem. Let T be the MST of G = (V, E),
and let A — V. Suppose that (u, v) € E Is the

least-weight edge connecting Ato V \ A.
Then, (u,v) e T.

CS 3343 Analysis of Algorithms

ALGORITHMS

=~ Proof of theorem
Proof. Suppose (u, v) ¢ T. Cut and paste.

(u, v) = least-weight edge
o cV\A connecting A to V \ A

11/9/10 CS 3343 Analysis of Algorithms 5

o € A

e c V\A (u, v) = least-weight edge

connecting Ato V\ A
Consider the unique simple path fromutovin T.

11/9/10 CS 3343 Analysis of Algorithms 6

=~ Proof of theorem

Proof. Suppose (u, v) ¢ T. Cut and paste.

T: :\

o € A
o cV\A

(u, v) = least-weight edge
connecting Ato V\ A

Consider the unique simple path fromutovin T.

Swap (u, v) with the first edge on this path that
connects a vertex In A to a vertex in V \ A.

11/9/10 CS 3343 Analysis of Algorithms 7

=~ Proof of theorem

Pr.oc.)f. Suppose (u, v) ¢ T. Cut and paste.

T" :\
o € A /

o cV\A

(u, v) = least-weight edge
connecting Ato V\ A

Consider the unique simple path fromutovin T.

Swap (u, v) with the first edge on this path that
connects a vertex In A to a vertex in V \ A.

A lighter-weight spanning tree than T results.

11/9/10 CS 3343 Analysis of Algorithms 8

ALGORITHMS

“ 4~ Prim’s algorithm

IDEA: Maintain \V \ A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.

Q«V
key[v] <~ oo forallv e V
key[s] «— O for some arbitrary s € V
while Q = &
do u < EXTRACT-MIN(Q)
for each v € Adj[u]
doif v e Q and w(u, v) < key|[v]
then key[v] < w(u,v) © DECREASE-KEY
r[v] <« u

At the end, {(v, =[v])} forms the MST.

11/9/10 CS 3343 Analysis of Algorithms

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

10

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

11

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

12

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

13

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

14

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

15

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

16

U 0 12
G—0

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

17

" Example of Prim’s algorithm

fiC\A 0 12
_—

U <~ EXTRACT-MIN(Q)
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

18

1 < EXTRACT-MIN(Q) 3
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

19

1 < EXTRACT-MIN(Q) 3
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

20

"+ Example of Prim’s algorithm
o € A
e cV\A %
:
% 0

1 < EXTRACT-MIN(Q) 3
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

21

"+ Example of Prim’s algorithm
o € A
o cV\A %

% boe

1 < EXTRACT-MIN(Q) 3
for each v € Adj[u]
doifv e Q and w(u, v) < key|[v]
then key[v] < w(u, v)& DECREASE-KEY

n[v] <« u

11/9/10 CS 3343 Analysis of Algorithms

22

N Analysis of Prim

C Q«V
O(V]) 2 key[v] <~ woforallv e V
total | yey[s] < 0 for some arbitrary s < V
- while Q # &
do u <— EXTRACT-MIN(Q)
V]) for each v € Adj[u]
times | degree(u) do if v e Q and w(u, v) < key[v]
times then key[v] < w(u, V)
N

_ n[v] < u /

Handshaking Lemma = O(|E|) implicit Decrease-KEY’S.
Time = O(|V]) Texrract-Min T OUED Tpecrease-Key

11/9/10

CS 3343 Analysis of Algorithms 23

< Analysis of Prim (continued)

Time = O(|V]) Texrract-min T CUED Tpecrease-kEY

Q TextractMiN TDecrease-key Total

array o(V|) O(1) O(IV|?)

binary
heap

Fibonacci O(log|V]) O(1) O(E| + |V]|log|V])
heap amortized amortized worst case

O(log|V[) O(log|V]) | O([E[log|V])

11/9/10 CS 3343 Analysis of Algorithms 24

ALGORITHMS

m—!m

= 4~ Kruskal’s algorithm

1\\

|DEA (again greedy):
Repeatedly pick edge with smallest weight as long as It
does not form a cycle.

 The algorithm creates a set of trees (a forest)
 During the algorithm the added edges merge the trees
together, such that in the end only one tree remains

 The correctness of this greedy strategy Is not obvious
and needs to be proven. (Proof skipped here.)

11/9/10 CS 3343 Analysis of Algorithms 25

f{@' Example of Kruskal’s algorithm

S={1a}.{0b}.1c}1d}.{e}
1o {h{ah{h}}

- MST edges
a setrepr. 6

14

Every node Is a single tree.

11/9/10 CS 3343 Analysis of Algorithms 26

{}' Example of Kruskal’s algorithm

1o {a} {eh}}

- MST edges
a setrepr. 6

14

Edge 3 merged two singleton trees.

11/9/10 CS 3343 Analysis of Algorithms 27

ALGORITHMS

c{@l '1 Example of Kruskal’s algorithm

W

S={{a}.{d}{f}. {a}
— MST edges : 1o 1&h}{b,c}}
a setrepr.

11/9/10 CS 3343 Analysis of Algorithms 28

c{?” Example of Kruskal’s algorithm

W

- MST edges
a setrepr.

11/9/10

S={ 1)1}, 19}
12 {§1 h}1 {Q, b1 C}}

CS 3343 Analysis of Algorithms

29

AAAAAAAAAA

" Example of Kruskal’s algorithm

12 &hh{a,b,c 1}}

- MST edges
a setrepr.

11/9/10 CS 3343 Analysis of Algorithms 30

AAAAAAAAAA

' Example of Kruskal’s algorithm

19 {e,h,a,b,c, }}

- MST edges
a setrepr.

Edge 8 merged the two bigger trees.

11/9/10 CS 3343 Analysis of Algorithms 31

AAAAAAAAAA

' Example of Kruskal’s algorithm

S={{a}
19 {e,h,a,b,c f,d}}

- MST edges
a setrepr.

11/9/10 CS 3343 Analysis of Algorithms

AAAAAAAAAA

' - Example of Kruskal’s algorithm

‘\\‘

S={ {9}
— MST edges 1» {ehab.cfd}}
e A

Skip edge 10 as It would cause a cycle.

11/9/10 CS 3343 Analysis of Algorithms 33

AAAAAAAAAA

‘\, ' Example of Kruskal’s algorithm

S={{a}
19 {e,h,a,b,c f,d}}

- MST edges
a setrepr.

Skip edge 12 as it would cause a cycle.

11/9/10 CS 3343 Analysis of Algorithms 34

AAAAAAAAAA

‘\, ' Example of Kruskal’s algorithm

S={{a}
19 {e,h,a,b,c f,d}}

- MST edges
a setrepr. 6

Skip edge 14 as it would cause a cycle.

11/9/10 CS 3343 Analysis of Algorithms 35

AAAAAAAAAA

- ' Example of Kruskal’s algorithm
S={{e,h,a,b,c, 1 d g}}

- MST edges
a setrepr.

11/9/10 CS 3343 Analysis of Algorithms

AAAAAAAAAA

(Unlon Flnd)

* Maintains a dynamic collection of pairwise-disjoint
sets S =4{S., S,, ..., S, }.

 Each set S, has one element distinguished as the
representative element.

e Supports operations:

O(1) « MAKE-SET(X): adds new set {x} to S
O(a(n)) « UNION(X, Y): replaces sets S,, S, with S, U S,

O(a(n)) FIND-SET(X): returns the representatlve of the
set S, containing element x

* 1 <a(n) <log*(n) <log(log(n)) <log(n)

11/9/10 CS 3343 Analysis of Algorithms 37

AAAAAAAAAA

H Kruskal’s algorithm

1\\

|DEA. Repeatedly pick edge with smallest
welght as long as it does not form a cycle.

S« @ © Swill contain all MST edges

O(Vl) foreachv €V do MAKE-SET(V)
O(|E[loglE[) Sort edges of E in non-decreasing order according to w

O(|E|) For each (u,v) € E taken in this order do

'if FIND-SET(u) # FIND-SET(v) © u,v in different trees
O(a(V])) & S« Su{uv)}

. UNION(u,v) = Edge (u,v) connects the two trees

Runtime: O(|V|+|E|log|E|+|E|a(|V])) = O(|E| log |E|)

11/9/10 CS 3343 Analysis of Algorithms 38

AAAAAAAAAA

e I\/IST algorithms

\'\“’

* Prim’s algorithm:
* Maintains one tree
* Runs in time O(|E| log |V]), with binary heaps.

 Kruskal’s algorithm:
* Maintains a forest and uses the disjoint-set
data structure
* Runs in time O(|E| log |E|)

* Best to date: Randomized algorithm by Karger,
Klein, Tarjan [1993]. Runs in expected time
O(V| + |E[)

11/9/10 CS 3343 Analysis of Algorithms 39

