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ALGORITHMS

~ <~ Dynamic programming

e Algorithm design technique
* A technique for solving problems that have

e overlapping subproblems

e and, when used for optimization, have an optimal
substructure property

* Idea: Do not repeatedly solve the same subproblems,
but solve them only once and store the solutions in a
dynamic programming table
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ey Example Fibonacci numbers

. F(O):O; F(1)=1; F(n)=F(n-1)+F(n-2) for n > 2

 Implement this recursion naively:

Solve same
- F(n) —_ subprol_olems
F(n-1) F(n-2) many times !

<~ . 7\ ..
F(n-2) F(n-3) F(n-3) F(n-4)|Runtimeis
exponential In n.

e Store 1D DP-table and fill bottom-up in O(n) time:
F-10|1]1(2|31]5]8
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< ‘ LLongest Common Subsequence

\‘ \‘

Example: Longest Common Subsequence (LCS)

e Glven two sequences x[1 .. m]and y[1 .. n], find
a longest subsequence common to them both.
& (£a11 not ‘(the11

xx A B C B, D A B BCBA—

| \ | LCS(x )

y B D C A B A )

functional notation,
but not a function
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~ -~ Brute-force LCS algorithm

1\\‘ :

Check every subsequence of x[1 .. m] to see
If 1t IS also a subsequence of y[1 .. n].

Analysis

e 2™ subsequences of x (each bit-vector of
length m determines a distinct subsequence
of x).

* Hence, the runtime would be exponential !
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;;;ﬂ Towards a better algorithm

Two-Step Approach:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by [s].

Strategy: Consider prefixes of x and v.

e Define c[i, ] = |LCS(x[1..1], y[1..]])].

* Then, c[m, n] = [LCS(x, y)|.
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ALGORITHMS

< Recursive formulation

Theorem
o [ch-1, 1] +1 It x[1] = yQl,
CL 1= max{cfi-1, i1, c[i, j-11} otherwise.
Proof. Case x[i] = y[J]
1 2 m
X:
1 2 =\ N
V:

Letz[1.. k] =LCS(x[1..1],y[1..]]),wherec]i, |]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 .. k=1]1sCSof x[1..i1-1]and y[1 .. ]-1].
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:;‘"‘:\",'1 Proof (continued)

Claim: z[1..k-1] = LCS(x[1..1-1],y[1..J-1]).
Suppose w iIs a longer CS of x[1 . . 1-1] and
y[1..]-1], thatis, |w|>k-1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) Is a
common subsequence of x[1 .. 1]and y[1..]]

with |w || z[k] | > k. Contradiction, proving the
claim.
Thus, c[i-1, |-1] = k=1, which implies that c[I, ||
=c[i-1, ]-1] + 1.

Other cases are similar.
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@ Dynamic-programming
~* " hallmark #1

© Optimal substructure

An optimal solution to a problem
(Instance) contains optimal
solutions to subproblems.

~ mmmm) Recurrence

If z = LCS(X, y), then any prefix of z Is
an LCS of a prefix of x and a prefix of y.
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ALGORITHMS

“% Recursive algorithm for LCS

LCS(X, v, 1, |)
It x[i] =yl ]}
thenc[i, J]] « LCS(x,y, I-1, ]-1) + 1
else c[i, j] <« max{ LCS(x, v, i-1, j),
LCS(x, v, i, j-1)}

Worst-case: x[1] # y[ ], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.
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Recursmn tree

1\\ :

m = 3 n=4: (3.4)
@ same @
subproblem

Ly (g 3 . (33 men
13) (22 13) (22

Height = m + n = work potentially exponential,
but we’re solving subproblems already solved!
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w= Dynamic-programming

2% hallmark #2

(B Overlapping subproblems
A recursive solution contains a
“small”” number of distinct
subproblems repeated many times.

N

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.
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ALGORITHMS

Ty

~ &~ Dynamic-programming

There are two variants of dynamic
programming:

1. Memoization

2. Bottom-up dynamic programming
(often referred to as “dynamic
programming”)
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ALGORITHMS

=+ Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.
forall i, j: c[i,0]=0 and c[0, |]=0
LCS(x, vy, 1, ])
if c[i, j] = NIL
then if x[i] = y[j]
then c[i, J] « LCS(x,y, 1-1, ]-1) + 1
else c[i, j] < max{ LCS(x, y, i-1, j),
LCS(x, v, i, j—l)}/

Time = ®(mn) = constant work per table entry.
Space = ®(mn).
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“«* Recursive formulation

o C[i—i,\j—l] +1 1T X[1] = y[j],
cll, J] = { max{c[i—l, 11, cli, j—l]} otherwise.
- t
C. |'1 |
J-1

] ‘T%V[{j]
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IDEA:
Compute the

table bottom-up. R

Time = ©(mn).
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> W > O O

Bottom-up dynamic-
~*" programming algorithm

A B C B D A B
00,010,000, 0
0 (:)J\Zl.*ﬁl.\l 14-1\1
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NN
01112233 4|4
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p—q Bottom-up dynamic-
- programming algorithm

IDEA:

Compute the
table bottom-up. R

Time = ©(mn).
Reconstruct
LCS by back-
tracing.

Space = ®(mn).
Exercise:
O(min{m, n}).
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