
CS 3343 -- Fall 2010

Red-black trees
Carola Wenk

Slides courtesy of Charles Leiserson with small

10/14/10 CS 3343 Analysis of Algorithms 1

y
changes by Carola Wenk

Search Trees

• A binary search tree is a binary tree. Each node stores a
key. The tree fulfills the binary search tree property:

For every node x holds:
f ll i h b l f f• y≤ x , for all y in the subtree left of x

• x < y, for all y in the subtree right of x

18183

7

8 1515

1010 2222

10/14/10 CS 3343 Analysis of Algorithms 2

1212 1717

Search Trees

Different variants of search trees:

• Balanced search trees (guarantee height of log n
for n elements)

• k-ary search trees (such as B-trees, 2-3-4-trees)

• Search trees that store the keys 7• Search trees that store the keys
only in the leaves, and store
additional split-values in the 1010

1818

2222

3

7

internal nodes
8 1515

12 17

10/14/10 CS 3343 Analysis of Algorithms 3

77

ADT Dictionary / Dynamic Sety y
Abstract data type (ADT) Dictionary
(also called Dynamic Set):(also called Dynamic Set):
A data structure which supports operations

7• Insert
• Delete 1010

1818

2222

3

7

• Find
Using balanced binary search trees we can

8 1515

1212 1717

Using balanced binary search trees we can
implement a dictionary data structure such that
each operation takes O(log n) time

10/14/10 CS 3343 Analysis of Algorithms 4

each operation takes O(log n) time.

Balanced search trees
Balanced search tree: A search-tree data
structure for which a height of O(log n) isstructure for which a height of O(log n) is
guaranteed when implementing a dynamic
set of n itemsset of n items.

• AVL trees
2 3 t

Examples:
• 2-3 trees
• 2-3-4 trees

B t• B-trees
• Red-black trees

10/14/10 CS 3343 Analysis of Algorithms 5

Red-black trees
This data structure requires an extra one-
bit color field in each nodebit color field in each node.
Red-black properties:
1 E d i ith d bl k1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL’s) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x,

to a descendant leaf have the same number of
bl k d bl k h i h ()

10/14/10 CS 3343 Analysis of Algorithms 6

black nodes = black-height(x).

Example of a red-black treep
7

183

h = 410 22NIL NIL

NIL
8 11 26

NIL NIL NIL NIL

NIL

NIL NILNIL NIL NIL NIL NIL NIL

10/14/10 CS 3343 Analysis of Algorithms 7

Example of a red-black treep
7

183

10 22NIL NIL

NIL
8 11 26

NIL NIL NIL NIL

NIL

NIL NILNIL NIL NIL NIL NIL NIL

1. Every node is either red or black.

10/14/10 CS 3343 Analysis of Algorithms 8

y

Example of a red-black treep
7

183

10 22NIL NIL

NIL
8 11 26

NIL NIL NIL NIL

NIL

NIL NILNIL NIL NIL NIL NIL NIL

2., 3. The root and leaves (NIL’s) are black.

10/14/10 CS 3343 Analysis of Algorithms 9

, ()

Example of a red-black treep
7

183

10 22NIL NIL

NIL
8 11 26

NIL NIL NIL NIL

NIL

NIL NILNIL NIL NIL NIL NIL NIL

4. If a node is red, then both its children are

10/14/10 CS 3343 Analysis of Algorithms 10

,
black.

Example of a red-black treep
7 bh = 2

183 bh = 2

10 22NIL NIL

NIL

bh = 1

8 11 26

NIL NIL NIL NIL

NIL

NIL NIL

bh = 1

bh = 0

5. All simple paths from any node x, excluding
x, to a descendant leaf have the same

NIL NIL NIL NIL NIL NILbh 0

10/14/10 CS 3343 Analysis of Algorithms 11

,
number of black nodes = black-height(x).

Height of a red-black treeg

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)f (y)
INTUITION:
• Merge red nodesMerge red nodes

into their black
parents.p

10/14/10 CS 3343 Analysis of Algorithms 12

Height of a red-black treeg

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)f (y)
INTUITION:
• Merge red nodesMerge red nodes

into their black
parents.p

10/14/10 CS 3343 Analysis of Algorithms 13

Height of a red-black treeg

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)f (y)
INTUITION:
• Merge red nodesMerge red nodes

into their black
parents.p

10/14/10 CS 3343 Analysis of Algorithms 14

Height of a red-black treeg

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)f (y)
INTUITION:
• Merge red nodesMerge red nodes

into their black
parents.p

10/14/10 CS 3343 Analysis of Algorithms 15

Height of a red-black treeg

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)f (y)
INTUITION:
• Merge red nodesMerge red nodes

into their black
parents.p

10/14/10 CS 3343 Analysis of Algorithms 16

Height of a red-black treeg

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)f (y)
INTUITION:
• Merge red nodes h′Merge red nodes

into their black
parents.

h′

• This process produces a tree in which each node
has 2, 3, or 4 children.

p

10/14/10 CS 3343 Analysis of Algorithms 17

• The 2-3-4 tree has uniform depth h′ of leaves.

Proof (continued)()

• We have

h
h′ ≥ h/2, since
at most half
th tithe vertices on any
path are red.

• The number of leaves
in each tree is n + 1
⇒ + 1 ≥ 2h' h′⇒ n + 1 ≥ 2h

⇒ log(n + 1) ≥ h' ≥ h/2
⇒ h ≤ 2 log(n + 1)

10/14/10 CS 3343 Analysis of Algorithms 18

⇒ h ≤ 2 log(n + 1).

Query operationsQ y p

Corollary. The queries SEARCH, MIN, y q
MAX, SUCCESSOR, and PREDECESSOR
all run in O(log n) time on a red-black (g)
tree with n nodes.

77

1010

1818

2222

33
NIL NIL

88 1111

1010

2626

2222NIL NIL

NIL

10/14/10 CS 3343 Analysis of Algorithms 19

NIL NIL NIL NIL NIL NIL

Modifying operationsy g p

The operations INSERT and DELETE cause
modifications to the red-black tree:
1. the operation itself,
2. color changes,
3 restructuring the links of the tree3. restructuring the links of the tree

via “rotations”.

10/14/10 CS 3343 Analysis of Algorithms 20

Rotations

B RIGHT-ROTATE(B) A

AA

B

B

AA
LEFT-ROTATE(A)

α ββ
γγ

γγββ
α

• Rotations maintain the inorder ordering of keys:
a ∈ α, b ∈ β, c ∈ γ ⇒ a ≤ A ≤ b ≤ B ≤ c.

• Rotations maintain the binary search tree property

10/14/10 CS 3343 Analysis of Algorithms 21

• A rotation can be performed in O(1) time.

Red-black trees
This data structure requires an extra one-
bit color field in each nodebit color field in each node.
Red-black properties:
1 E d i ith d bl k1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL’s) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x,

to a descendant leaf have the same number of
bl k d bl k h i h ()

10/14/10 CS 3343 Analysis of Algorithms 22

black nodes = black-height(x).

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated Move theblack property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
18

7

3

g

• Insert x =15.
1010

1818

2222

3

15

8 1111 2626

10/14/10 CS 3343 Analysis of Algorithms 23

1515

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated Move theblack property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
18

7

3

g

• Insert x =15.
• Recolor, moving the 1010

1818

2222

3

15

violation up the tree. 8 1111 2626

10/14/10 CS 3343 Analysis of Algorithms 24

1515

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated Move theblack property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

Example:
18

7

3

g

• Insert x =15.
• Recolor, moving the 1010

1818

2222

3

15

violation up the tree. 8 1111 2626

10/14/10 CS 3343 Analysis of Algorithms 25

1515

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated Move theblack property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

18

7
Example:

3

g

1010

1818

2222
• Insert x =15.
• Recolor, moving the

3

8 1111 2626

15

violation up the tree.
• RIGHT-ROTATE(18).

10/14/10 CS 3343 Analysis of Algorithms 26

1515

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated Move theblack property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

10

7
Example:

3

g

8

1010

1818
• Insert x =15.
• Recolor, moving the

3

1111

26

2222

15

violation up the tree.
• RIGHT-ROTATE(18).

10/14/10 CS 3343 Analysis of Algorithms 27

26261515

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated Move theblack property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

10

7
Example:

3

g

8

1010

1818
• Insert x =15.
• Recolor, moving the

3

1111

26

2222

15

violation up the tree.
• RIGHT-ROTATE(18).

10/14/10 CS 3343 Analysis of Algorithms 28

26261515
• LEFT-ROTATE(7)

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated Move theblack property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.g

1010Example:

8 1111

1818

2222

7• Insert x =15.
• Recolor, moving the 3

26261515violation up the tree.
• RIGHT-ROTATE(18).

10/14/10 CS 3343 Analysis of Algorithms 29

• LEFT-ROTATE(7)

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated Move theblack property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.g

1010Example:

8 1111

1818

2222

7• Insert x =15.
• Recolor, moving the 3

26261515violation up the tree.
• RIGHT-ROTATE(18).

10/14/10 CS 3343 Analysis of Algorithms 30

• LEFT-ROTATE(7) and recolor.

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated Move theblack property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.g

1010Example:

8 1111

1818

2222

7• Insert x =15.
• Recolor, moving the 3

26261515violation up the tree.
• RIGHT-ROTATE(18).

10/14/10 CS 3343 Analysis of Algorithms 31

• LEFT-ROTATE(7) and recolor.

Pseudocode
RB-INSERT(T, x)

TREE INSERT(T x)TREE-INSERT(T, x)
color[x] ← RED only RB property 4 can be violated
while x ≠ root[T] and color[p[x]] = RED

if [] l f [[[]]do if p[x] = left[p[p[x]]
then y ← right[p[p[x]] y = aunt/uncle of x

if color[y] = RED[y]
then 〈Case 1〉
else if x = right[p[x]]

then 〈Case 2〉 Case 2 falls into Case 3then 〈Case 2〉 Case 2 falls into Case 3
〈Case 3〉

else 〈“then” clause with “left” and “right” swapped〉
l [[T]]

10/14/10 CS 3343 Analysis of Algorithms 32

color[root[T]] ← BLACK

Graphical notationp

L t d t bt ith bl k tLet denote a subtree with a black root.

All ’ h th bl k h i htAll ’s have the same black-height.

10/14/10 CS 3343 Analysis of Algorithms 33

Case 1
C C new x

Recolor Continue

B

DA

x
y

B

DA

Bx B

(Or, A’s children are swapped.) Push C’s black onto A
and D and rec rseand D, and recurse,
since C’s parent may be
red.

p[x] = left[p[p[x]]
y = right[p[p[x]]

10/14/10 CS 3343 Analysis of Algorithms 34

color[y] = RED

Case 2

L R (A)C

A
y

LEFT-ROTATE(A) C

B
y

Bx Ax

[] l ft[[[]]
Transform to Case 3.

p[x] = left[p[p[x]]
y = right[p[p[x]]
color[y] = BLACK

10/14/10 CS 3343 Analysis of Algorithms 35
x = right[p[x]]
color[y] BLACK

Case 3

RIGHT-ROTATE(C)C ()
(and recolor)

C

B
y

A

B

C
Ax

Done! No more
i l ti f RB[] l ft[[[]] violations of RB

property 4 are
possible

p[x] = left[p[p[x]]
y = right[p[p[x]]
color[y] = BLACK

10/14/10 CS 3343 Analysis of Algorithms 36

possible.
x = left[p[x]]
color[y] BLACK

Analysisy

• Go up the tree performing Case 1 which only• Go up the tree performing Case 1, which only
recolors nodes.
If C 2 C 3 f 1 2• If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(log n) with O(1) rotations.
RB-DELETE — same asymptotic running timeRB-DELETE same asymptotic running time
and number of rotations as RB-INSERT (see
textbook).

10/14/10 CS 3343 Analysis of Algorithms 37

)

Pseudocode (part II)(p)
else 〈“then” clause with “left” and “right” swapped〉

p[x] = right[p[p[x]]p[x] = right[p[p[x]]
then y ← left[p[p[x]] y = aunt/uncle of x

if color[y] = RED
h 〈C 1’〉then 〈Case 1’〉

else if x = left[p[x]]
then 〈Case 2’〉 Case 2’ falls into Case 3’〈 〉

〈Case 3’〉
color[root[T]] ← BLACK

10/14/10 CS 3343 Analysis of Algorithms 38

Case 1’
C

Recolor new xC
Continue

y

B

A

x
D y

B

A

x
D

Bx Bx

(Or, A’s children are swapped.) Push C’s black onto A
and D and rec rsep[x] = right[p[p[x]]

y = left[p[p[x]]

and D, and recurse,
since C’s parent may be
red.

10/14/10 CS 3343 Analysis of Algorithms 39

color[y] = RED

Case 2’

R R (A)C RIGHT-ROTATE(A)

Ay
C

y B xy
Bx

A

y

[] i ht[[[]]p[x] = right[p[p[x]]
y = left[p[p[x]]
color[y] = BLACK

Transform to Case 3’.

10/14/10 CS 3343 Analysis of Algorithms 40
x = left[p[x]]
color[y] BLACK

Case 3’

LEFT-ROTATE(C)
C

()
(and recolor)

C

B

A

C

y B x
C

A

Done! No more
i l ti f RB[] i ht[[[]] violations of RB

property 4 are
possible

p[x] = right[p[p[x]]
y = left[p[p[x]]
color[y] = BLACK

10/14/10 CS 3343 Analysis of Algorithms 41

possible.
x = right[p[x]]
color[y] BLACK

