2. Homework Due 9/14/10 before class

1. Big-Oh ranking (8 points)

Rank the following functions by order of growth, i.e., find an arrangement $f_1, f_2, ...$ of the functions satisfying $f_1 \in O(f_2), f_2 \in O(f_3),...$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_i, f_j that are adjacent in your ordering, prove shortly why $f_i \in O(f_j)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.

$$\frac{1}{3}n^2 + 3n \; , \; 3 \; , \; \sqrt{n} \; , \; n^3 \; , \; 2^{\frac{n}{2}} \; , \; \log n \; , \; n^2 \; , \; 2^n \; , \; n^2 \log n \; ,$$

Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l'Hôpital which states that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

if the limits exist; where f'(n) and g'(n) are the derivatives of f and g, respectively.

2. Code snippets (6 points)

For each of the code snippets below give their Θ -runtime depending on n. Justify your answers.

(a) **(2 points)**

```
for(i=2n; i>=2; i=i-2){
  for(j=n; j>=2; j=j/2){
     print(" ");
  }
}
```

(b) (2 points) Note that sqrt is the square root.

```
for(i=1; i<=sqrt(n); i=i+1){
    print(" ");
}

for(j=1; sqrt(j)<=n; j=j+1){
    print(" ");
}</pre>
```

(c) (2 points)

```
for(i=1; i<=n; i++){
  for (j=1; j<=i; j++){
    print(" ");
  }
}</pre>
```

3. Heapify (2 points)

Give a worst-case example of a heap that will cause **Heapify_down** (in the book: Max-Heapify) to run in $\Omega(\log n)$ time. Justify your answer shortly.

4. Sorted array (2 points)

Is an array that is sorted in increasing order a max-heap? What about an array that is sorted in decreasing order? Justify your answer.

5. Min in a Max-Heap (2 points)

Where is the minimum element located in a max-heap? How can you compute it, and what is the runtime of your algorithm?