
CS 334 Analysis of Algorithms 110/11/07

CS 3343 – Fall 2007

Red-black trees
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 334 Analysis of Algorithms 210/11/07

Search Trees

• A binary search tree is a binary tree. Each node stores
a key. The tree fulfills the binary search tree property:

For every node x holds:
• left(x)≤ x , if x’s left child left(x) exists
• x ≤ right(x) , if x’s right child right(x) exists

88 1515

1010

1818

2222

33

77

1212 1717

CS 334 Analysis of Algorithms 310/11/07

Search Trees

Different variants of search trees:

• Balanced search trees (guarantee height of log n
for n elements)

• k-ary search trees (such as B-trees, 2-3-trees)

• Search trees that store the keys
only in the leaves, and store
additional split-values in the
internal nodes

88 1515

1010

1818

2222

33

77

1212 1717

CS 334 Analysis of Algorithms 410/11/07

ADT Dictionary / Dynamic Set
Abstract data type (ADT) Dictionary
(also called Dynamic Set):
A data structure which supports operations
• Insert
• Delete
• Find
Using balanced binary search trees we can
implement a dictionary data structure such that
each operation takes O(log n) time.

88 1515
1010

1818

2222
33

77

1212 1717

CS 334 Analysis of Algorithms 510/11/07

Balanced search trees
Balanced search tree: A search-tree data
structure for which a height of O(log n) is
guaranteed when implementing a dynamic
set of n items.

Examples:

• AVL trees
• 2-3 trees
• 2-3-4 trees
• B-trees
• Red-black trees

CS 334 Analysis of Algorithms 610/11/07

Red-black trees
This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL’s) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x,

to a descendant leaf have the same number of
black nodes = black-height(x).

CS 334 Analysis of Algorithms 710/11/07

Example of a red-black tree

h = 4

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

CS 334 Analysis of Algorithms 810/11/07

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

1. Every node is either red or black.

CS 334 Analysis of Algorithms 910/11/07

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

2., 3. The root and leaves (NIL’s) are black.

CS 334 Analysis of Algorithms 1010/11/07

Example of a red-black tree

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

4. If a node is red, then both its children are
black.

CS 334 Analysis of Algorithms 1110/11/07

Example of a red-black tree

5. All simple paths from any node x, excluding
x, to a descendant leaf have the same
number of black nodes = black-height(x).

88 1111

1010

1818

2626

2222

33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

bh = 2

bh = 1

bh = 1

bh = 2

bh = 0

CS 334 Analysis of Algorithms 1210/11/07

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 334 Analysis of Algorithms 1310/11/07

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 334 Analysis of Algorithms 1410/11/07

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 334 Analysis of Algorithms 1510/11/07

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 334 Analysis of Algorithms 1610/11/07

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)
INTUITION:
• Merge red nodes

into their black
parents.

CS 334 Analysis of Algorithms 1710/11/07

Height of a red-black tree

Theorem. A red-black tree with n keys has height
h ≤ 2 log(n + 1).

Proof. (The book uses induction. Read carefully.)

• This process produces a tree in which each node
has 2, 3, or 4 children.

• The 2-3-4 tree has uniform depth h′ of leaves.

INTUITION:
• Merge red nodes

into their black
parents.

h′

CS 334 Analysis of Algorithms 1810/11/07

Proof (continued)

h′

h

• We have
h′ ≥ h/2, since
at most half
the leaves on any path
are red.

• The number of leaves
in each tree is n + 1
⇒ n + 1 ≥ 2h'

⇒ log(n + 1) ≥ h' ≥ h/2
⇒ h ≤ 2 log(n + 1).

CS 334 Analysis of Algorithms 1910/11/07

Query operations

Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR
all run in O(log n) time on a red-black
tree with n nodes.

88 1111

1010
1818

2626

2222
33

77

NIL NIL

NIL NIL NIL NIL

NIL

NIL NIL

CS 334 Analysis of Algorithms 2010/11/07

Modifying operations

The operations INSERT and DELETE cause
modifications to the red-black tree:
1. the operation itself,
2. color changes,
3. restructuring the links of the tree

via “rotations”.

CS 334 Analysis of Algorithms 2110/11/07

Rotations

AA
BB

αα ββ
γγ

RIGHT-ROTATE(B)

BB
AA

γγββ
αα

LEFT-ROTATE(A)

• Rotations maintain the inorder ordering of keys:
a ∈ α, b ∈ β, c ∈ γ ⇒ a ≤ A ≤ b ≤ B ≤ c.

• Rotations maintain the binary search tree property
• A rotation can be performed in O(1) time.

CS 334 Analysis of Algorithms 2210/11/07

Red-black trees
This data structure requires an extra one-
bit color field in each node.
Red-black properties:
1. Every node is either red or black.
2. The root is black.
3. The leaves (NIL’s) are black.
4. If a node is red, then both its children are black.
5. All simple paths from any node x, excluding x,

to a descendant leaf have the same number of
black nodes = black-height(x).

CS 334 Analysis of Algorithms 2310/11/07

Insertion into a red-black tree

1515

Example:
• Insert x =15.

88 1111

1010

1818

2626

2222

77

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 334 Analysis of Algorithms 2410/11/07

Insertion into a red-black tree

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
88 1111

1010

1818

2626

2222

77

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 334 Analysis of Algorithms 2510/11/07

Insertion into a red-black tree

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
88 1111

1010

1818

2626

2222

77

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 334 Analysis of Algorithms 2610/11/07

Insertion into a red-black tree

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 334 Analysis of Algorithms 2710/11/07

Insertion into a red-black tree

88

1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 334 Analysis of Algorithms 2810/11/07

Insertion into a red-black tree

88

1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7)

33

IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

CS 334 Analysis of Algorithms 2910/11/07

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7)

33

CS 334 Analysis of Algorithms 3010/11/07

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

33

CS 334 Analysis of Algorithms 3110/11/07

Insertion into a red-black tree
IDEA: Insert x in tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until it can
be fixed with rotations and recoloring.

88 1111

1010

1818

2626

2222

77

1515

Example:
• Insert x =15.
• Recolor, moving the

violation up the tree.
• RIGHT-ROTATE(18).
• LEFT-ROTATE(7) and recolor.

33

CS 334 Analysis of Algorithms 3210/11/07

Pseudocode
RB-INSERT(T, x)

TREE-INSERT(T, x)
color[x] ← RED ⊳ only RB property 4 can be violated
while x ≠ root[T] and color[p[x]] = RED

do if p[x] = left[p[p[x]]
then y ← right[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED
then 〈Case 1〉
else if x = right[p[x]]

then 〈Case 2〉 ⊳ Case 2 falls into Case 3
〈Case 3〉

else 〈“then” clause with “left” and “right” swapped〉
color[root[T]] ← BLACK

CS 334 Analysis of Algorithms 3310/11/07

Graphical notation

Let denote a subtree with a black root.

All ’s have the same black-height.

CS 334 Analysis of Algorithms 3410/11/07

Case 1

BB

CC

DDAA

x
y

(Or, A’s children are swapped.)

BB

CC

DDAA

new x

Push C’s black onto A
and D, and recurse,
since C’s parent may be
red.

Recolor

p[x] = left[p[p[x]]
y = right[p[p[x]]
color[y] = RED

Recurse

CS 334 Analysis of Algorithms 3510/11/07

Case 2

BB

CC

AA

x

y
LEFT-ROTATE(A)

AA

CC

BB

x

y

Transform to Case 3.
p[x] = left[p[p[x]]
y = right[p[p[x]]

x = right[p[x]]
color[y] = BLACK

CS 334 Analysis of Algorithms 3610/11/07

RIGHT-ROTATE(C)
(and recolor)

Case 3

AA

CC

BB

x

y
AA

BB

CC

Done! No more
violations of RB
property 4 are
possible.

p[x] = left[p[p[x]]
y = right[p[p[x]]

x = left[p[x]]
color[y] = BLACK

CS 334 Analysis of Algorithms 3710/11/07

Analysis

• Go up the tree performing Case 1, which only
recolors nodes.

• If Case 2 or Case 3 occurs, perform 1 or 2
rotations, and terminate.

Running time: O(log n) with O(1) rotations.
RB-DELETE — same asymptotic running time
and number of rotations as RB-INSERT (see
textbook).

CS 334 Analysis of Algorithms 3810/11/07

Pseudocode (part II)
else 〈“then” clause with “left” and “right” swapped〉
⊳ p[x] = right[p[p[x]]
then y ← left[p[p[x]] ⊳ y = aunt/uncle of x

if color[y] = RED
then 〈Case 1’〉
else if x = left[p[x]]

then 〈Case 2’〉 ⊳ Case 2’ falls into Case 3’
〈Case 3’〉

color[root[T]] ← BLACK

CS 334 Analysis of Algorithms 3910/11/07

Case 1’

CC

y

(Or, A’s children are swapped.)

Recolor

p[x] = right[p[p[x]]
y = left[p[p[x]]
color[y] = RED

BB

AA

x
DD

Push C’s black onto A
and D, and recurse,
since C’s parent may be
red.

new xCC

y

BB

AA

x
DD

CS 334 Analysis of Algorithms 4010/11/07

Case 2’

CC RIGHT-ROTATE(A)

p[x] = right[p[p[x]]
y = left[p[p[x]]

x = left[p[x]]
color[y] = BLACK

AAy

BBx

Transform to Case 3’.

CC

AA

y BB
x

CS 334 Analysis of Algorithms 4110/11/07

Case 3’

LEFT-ROTATE(C)
(and recolor)

AA

BB

CC

Done! No more
violations of RB
property 4 are
possible.

p[x] = right[p[p[x]]
y = left[p[p[x]]

x = right[p[x]]
color[y] = BLACK

CC

AA

y BB
x

