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Paths, Cycles, Connectivity
Let G=(V,E) be a directed (or undirected) graph
• A path from v1 to vk in G is a sequence of vertices v1, v2,…,vk such that 

(vi,v{i+1})∈E (or {vi,v{i+1}} ∈E if G is undirected) for all i∈{1,…,k-1}.
• A path is simple if all vertices in the path are distinct.
• A path v1, v2,…,vk forms a cycle if v1=vk and k≥2.
• A graph with no cycles is acyclic.

• An undirected acyclic graph is called a tree. (Trees do not have to 
have a root vertex specified.)
• A directed acyclic graph is a DAG. (A DAG can have undirected 
cycles if the direction of the edges is not considered.)

• An undirected graph is connected if every pair of vertices is connected 
by a path. A directed graph is strongly connected if for every pair 
u,v∈V there is a path from u to v and there is a path from v to u.

• The (strongly) connected components of a graph are the equivalence 
classes of vertices under this reachability relation.
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Topological Sort
Topologically sort the vertices of a directed acyclic 
graph (DAG):
• Determine f : V → {1, 2, …, |V|} such that (u, v) ∈ E
⇒ f (u) < f (v).
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Topological Sort Algorithm
• Store vertices in a priority min-queue, with the

in-degree of the vertex as the key
• While queue is not empty

• Extract minimum vertex v, and give it next number
• Decrease keys of all adjacent vertices by 1
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Topological Sort Algorithm
• Store vertices in a priority min-queue, with the

in-degree of the vertex as the key
• While queue is not empty

• Extract minimum vertex v, and give it next number
• Decrease keys of all adjacent vertices by 1
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Topological Sort Runtime

Runtime:
• O(|V|) to build heap + O(|E|) DECREASE-KEY ops
⇒ O(|V| + |E| log |V|) with a binary heap
⇒ O(|V| + |E|) with a Fibonacci heap
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Depth-First Search revisited

DFS_rec(G, v)
visit v;
d[v]=++time; //discover time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

f[v]=++time; //finish time

DFS(G=(V,E))
Mark all vertices in G as “unvisited”
time=0;
for each vertex v ∈ V do

if v is unvisited
DFS_rec(G,v)
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DFS Edge Classification

• Edge (u,v) in depth-first forest:
• Tree edge: v was discovered by by exploring edge (u,v)

• Edge (u,v) not in depth-first forest:
• Back edge: v is ancestor of u in depth-first forest
• Forward edge: v is descendant of u in depth-first forest
• Cross edge: Any other edge
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DFS-Based Topological Sort 
Algorithm

• Call DFS on the directed acyclic graph G=(V,E)
⇒ Finish time for every vertex

• Reverse the finish times (highest finish time 
becomes the lowest finish time,…)
⇒ Valid function f : V → {1, 2, …, | V |} such that 

(u, v) ∈ E ⇒ f (u) < f (v).

Runtime: O(|V|+|E|)
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DFS-Based Topological Sort
• Run DFS:
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Topological Sort Runtime

Runtime:
• O(|V|) to build heap + O(|E|) DECREASE-KEY ops
⇒ O(|V| + |E| log |V|) with a binary heap
⇒ O(|V| + |E|) with a Fibonacci heap

• DFS-based algorithm:  O(|V| + |E|)


