ALGORITHMS

11/1/07

CS 33433 — Fall 2007

ALGORITHMS

CLIFFORD STEIN

Topological Sort
Carola Wenk

CS 3343 Analysis of Algorithms

\1 G ()R]IH'\IS

__

s+ Paths, Cycles, Connectivity

mny

Let G= (VE) be a directed (or undirected) graph

* A path from v, to v, in G 1s a sequence of vertices v,, v,,...,v, such that
(Vv €L (or {v,vy, b €E£1t G is undirected) for all ie {1,...k-1}.

A path 1s simple if all vertices in the path are distinct.

 Apathv,, v,,....,v forms a cycle if v,=v, and k=2.

A graph with no cycles is acyclic.

» An undirected acyclic graph 1s called a tree. (Trees do not have to
have a root vertex specified.)

* A directed acyclic graph 1s a DAG. (A DAG can have undirected
cycles i1f the direction of the edges 1s not considered.)

* An undirected graph 1s connected 1if every pair of vertices 1s connected
by a path. A directed graph is strongly connected if for every pair
u,ve V there 1s a path from « to v and there 1s a path from v to w.

* The (strongly) connected components of a graph are the equivalence

classes of vertices under this reachability relation.
11/1/07 CS 3343 Analysis of Algorithms 2

~ &~ Topological Sort

Ve

Topologically sort the vertices of a directed acyclic

graph (DAG):
* Determine /: V' — {1, 2, ...,

= f(u) <f(v).

I

VUAFRGTRO

11/1/07 CS 3343 Analysis of Algorithms

ALGORITHMS

“ <~ Topological Sort Algorithm
* Store vertices 1n a priority min-queue, with the

in-degree of the vertex as the key
* While queue is not empty

» Extract minimum vertex v, and give it next number
* Decrease keys of all adjacent vertices by 1

11/1/07 CS 3343 Analysis of Algorithms

ALGORITHMS

5‘ Topological Sort Algorithm

e Store vertices 1n a priority min-queue, with the

in-degree of the vertex as the key
* While queue is not empty

» Extract minimum vertex v, and give 1t next number
* Decrease keys of all adjacent vertices by 1

0 U1 10

11/1/07 CS 3343 Analysis of Algorithms

A\LGORITHMS

-y

~ &~ Topological Sort Runtime

ny i

Runtime:

* O(|V]) to build heap + O(|E|) DECREASE-KEY ops
— O(|V| + [E| log |V]) with a binary heap

— O(|V| + |E|) with a Fibonacc1 heap

11/1/07 CS 3343 Analysis of Algorithms

IHI

‘ Depth -Kirst Search revisited

DES(G=(V,E))
Mark all vertices in G as “unvisited”
time=0;
for each vertex v € I"do
if v 1s unvisited

DFS rec(G,v)

DES rec(G, v)
visit v;
d[v]=t++time; //discover time
for each w adjacent to v do
if w 1s unvisited
Add edge (v,w) to tree T’
DFES rec(G,w)
fl[v]=t++time; //finish time

11/1/07 CS 3343 Analysis of Algorithms

ALGORI
L
b et

."\;5 DFS Edge Classification

mny

* Edge (#,v) in depth-first forest:

* Tree edge: v was discovered by by exploring edge (u,v)

* Edge (#,v) not in depth-first forest:
» Back edge: v 1s ancestor of u in depth-first forest
* Forward edge: v 1s descendant of u# in depth-first forest
* Cross edge: Any other edge

11/1/07 CS 3343 Analysis of Algorithms

""T'" DEFS-Based Topological Sort
~*' Algorithm

e (Call DFS on the directed acyclic graph G=(V,E)
—> Finish time for every vertex

* Reverse the finish times (highest finish time
becomes the lowest finish time,...)

— Valid function /: V' — {1, 2, ..., | |} such that
(u,v) € E= f(u) <f ().

Runtime: O(|V|+|E])

11/1/07 CS 3343 Analysis of Algorithms

-'\, . DFS-Based Topological Sort

Ve

 Run DFS:

11/1/07 CS 3343 Analysis of Algorithms

ALGORITHMS
- .

-y

mny

Runtime:

—
—

11/1/07

O(|V]) to build |
O(|V| + |E| log

' ;‘ Topological Sort Runtime

heap + O(|E|) DECREASE-KEY ops
V|) with a binary heap

O(| V| + |E|) wit]

1 a Fibonacci heap

DFS-based algorithm: O(|V|+ |[E|)

CS 3343 Analysis of Algorithms

11

