
CS 3343 Analysis of Algorithms 111/1/07

CS 33433 – Fall 2007

Topological Sort
Carola Wenk

CS 3343 Analysis of Algorithms 211/1/07

Paths, Cycles, Connectivity
Let G=(V,E) be a directed (or undirected) graph
• A path from v1 to vk in G is a sequence of vertices v1, v2,…,vk such that

(vi,v{i+1})∈E (or {vi,v{i+1}} ∈E if G is undirected) for all i∈{1,…,k-1}.
• A path is simple if all vertices in the path are distinct.
• A path v1, v2,…,vk forms a cycle if v1=vk and k≥2.
• A graph with no cycles is acyclic.

• An undirected acyclic graph is called a tree. (Trees do not have to
have a root vertex specified.)
• A directed acyclic graph is a DAG. (A DAG can have undirected
cycles if the direction of the edges is not considered.)

• An undirected graph is connected if every pair of vertices is connected
by a path. A directed graph is strongly connected if for every pair
u,v∈V there is a path from u to v and there is a path from v to u.

• The (strongly) connected components of a graph are the equivalence
classes of vertices under this reachability relation.

CS 3343 Analysis of Algorithms 311/1/07

Topological Sort
Topologically sort the vertices of a directed acyclic
graph (DAG):
• Determine f : V → {1, 2, …, |V|} such that (u, v) ∈ E
⇒ f (u) < f (v).

33 55 66

44

22

77

99

8811

33 55 664422 77 998811

CS 3343 Analysis of Algorithms 411/1/07

Topological Sort Algorithm
• Store vertices in a priority min-queue, with the

in-degree of the vertex as the key
• While queue is not empty

• Extract minimum vertex v, and give it next number
• Decrease keys of all adjacent vertices by 1

33 55 66

44

22

77

99

8811
0 22

1

1

3
1 10

CS 3343 Analysis of Algorithms 511/1/07

Topological Sort Algorithm
• Store vertices in a priority min-queue, with the

in-degree of the vertex as the key
• While queue is not empty

• Extract minimum vertex v, and give it next number
• Decrease keys of all adjacent vertices by 1

33 55 66

44

22

77

99

8811
0 22

1

1

3
1 10

1

2

0

0

0

1

0

0

0

1
0

CS 3343 Analysis of Algorithms 611/1/07

Topological Sort Runtime

Runtime:
• O(|V|) to build heap + O(|E|) DECREASE-KEY ops
⇒ O(|V| + |E| log |V|) with a binary heap
⇒ O(|V| + |E|) with a Fibonacci heap

CS 3343 Analysis of Algorithms 711/1/07

Depth-First Search revisited

DFS_rec(G, v)
visit v;
d[v]=++time; //discover time
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

f[v]=++time; //finish time

DFS(G=(V,E))
Mark all vertices in G as “unvisited”
time=0;
for each vertex v ∈ V do

if v is unvisited
DFS_rec(G,v)

CS 3343 Analysis of Algorithms 811/1/07

DFS Edge Classification

• Edge (u,v) in depth-first forest:
• Tree edge: v was discovered by by exploring edge (u,v)

• Edge (u,v) not in depth-first forest:
• Back edge: v is ancestor of u in depth-first forest
• Forward edge: v is descendant of u in depth-first forest
• Cross edge: Any other edge

CS 3343 Analysis of Algorithms 911/1/07

DFS-Based Topological Sort
Algorithm

• Call DFS on the directed acyclic graph G=(V,E)
⇒ Finish time for every vertex

• Reverse the finish times (highest finish time
becomes the lowest finish time,…)
⇒ Valid function f : V → {1, 2, …, | V |} such that

(u, v) ∈ E ⇒ f (u) < f (v).

Runtime: O(|V|+|E|)

CS 3343 Analysis of Algorithms 1011/1/07

DFS-Based Topological Sort
• Run DFS:

1 2 3 4 /5/6

7 8 /9/10

/11

13
14 15/16/17

/18

/12

• Reverse finish times:

98

6 7

5

32
1

4

CS 3343 Analysis of Algorithms 1111/1/07

Topological Sort Runtime

Runtime:
• O(|V|) to build heap + O(|E|) DECREASE-KEY ops
⇒ O(|V| + |E| log |V|) with a binary heap
⇒ O(|V| + |E|) with a Fibonacci heap

• DFS-based algorithm: O(|V| + |E|)

