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Have seen so far

* Algorithms for various problems

—Running times O(nm?),0(n?) ,O(n log n),
O(n), etc.

—Le., polynomial in the input size

* Can we solve all (or most of) interesting
problems in polynomial time ?

* Not really...
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Example difficult problem

* Traveling Salesperson
Problem (TSP)

— Input: undirected graph
with lengths on edges

— Output: shortest tour that
visits each vertex exactly
once

* Best known algorithm:
O(n 2") time.
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Another difficult problem

* Clique:
— Input: undirected graph
G=(V.E)

— Output: largest subset C
of V such that every pair
of vertices in C has an
edge between them

* Best known algorithm:
O(n 2") time
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What can we do ?

* Spend more time designing algorithms for those
problems

— People tried for a few decades, no luck

* Prove there is no polynomial time algorithm for
those problems

— Would be great

— Seems really difficult

— Best lower bounds for “natural” problems:
» Q(n?) for restricted computational models
* 4.5n for unrestricted computational models
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What else can we do ?

» Show that those hard problems are
essentially equivalent. L.e., if we can solve
one of them in polynomial time, then all
others can be solved in polynomial time as
well.

* Works for at least 10 000 hard problems
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The benefits of equivalence

* Combines research

efforts
* If one problem has

polynomial time P1

solution, then all of

them do P2
* More realistically:

Once an exponential
lower bound is shown

for one problem, it
holds for all of them P3
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Summing up

* If we show that a problem [ | is equivalent
to ten thousand other well studied problems
without efficient algorithms, then we get a
very strong evidence that || is hard.

* We need to:
— Identify the class of problems of interest
— Define the notion of equivalence
— Prove the equivalence(s)
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Class of problems: NP

* Decision problems: answer YES or NO. E.g.,”is
there a tour of length < K” ?

* Solvable in non-deterministic polynomial time:

— Intuitively: the solution can be verified in
polynomial time

— E.g., if someone gives us a tour T, we can
verify in polynomial time if T is a tour of length
<K.

e Therefore, TSP is in NP.
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Formal definitions of P and NP

* A decision problem [] is solvable in polynomial
time (or [ [€P), if there is a polynomial time
algorithm A(.) such that for any input x:

[I(x)=YES iff A(x)=YES

A decision problem [] is solvable in non-
deterministic polynomial time (or [ [eNP), if there
is a polynomial time algorithm A(. , .) such that
for any input x:

[Tx)=YES iff there exists a certificate y of size
poly([x|) such that A(x,y)=YES
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Examples of problems in NP

* Is “Does there exist a clique in G of size >K” in
NP ?

Yes: A(x,y) interprets x as a graph G, y as a set C,
and checks if all vertices in C are adjacent and if
|ICI=K

* Is Sorting in NP ?
No, not a decision problem.
* Is “Sortedness” in NP ?
Yes: ignore y, and check if the input x is sorted.
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Reductions: [’ to []

YES

X AforH<

NO

YES
A ,
—|A” for [ <
NO
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Reductions: []’ to []

YES ——
= A

-YES “YES

Reductions W™ aens

A for [T

* |1 is polynomial time reducible to [] ([]" <[])
iff there is a polynomial time function f that maps
inputs x’ for [’ into inputs x for [, such that for
any x’

[T )=T1(fx))

* Fact l:if [[ePand [’ <[] then [[ €P
* Fact2:if [|[eNP and [|” <[] then [["eNP
 Fact 3 (transitivity):

if [ <[]"and [T <[] then []” <[]
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NO —
YES
X b
e
NO
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Recap

* We defined a large class of interesting
problems, namely NP

* We have a way of saying that one problem
is not harder than another (||” <[])

* Our goal: show equivalence between hard
problems
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Showing equivalence between
difficult problems

* Options: TS O™
— Show reductions between all J
pairs of problems C]iq
— Reduce the number of
r%@g:"gmns using transitivity
of “<

IX\;
W
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Showing equivalence between
difficult problems

* Options: TS
— Show reductions between all \™
pairs of problems Clique
— Reduce the number of
refductlons using transitivity
0 “S”

—|Show that a// problems in NP / \
are reducible to a fixed []. P3 P4
To show that some v In

T P5

problem [’ NP is equivalent
to all difficult problems, we

|0nly show || < ]_[’.|
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The first problem []

+ Satisfiability problem (SAT):

— Given: a formula ¢ with m clauses over n
variables, e.g., X;vX,vXs, Xyv X5

— Check if there exists TRUE/FALSE
assignments to the variables that makes
the formula satisfiable
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Clique

TS
SAT is NP-complete \ /
7

SAT,

* Fact: SAT eNP b ‘/ \\”
« Theorem [Cook’71]: For any [’ NP L. Gl ~

we have [ | < SAT.

* Definition: A problem || such that for any
[I’eNP we have [|” <[], is called NP-hard

* Definition: An NP-hard problem that
belongs to NP is called NP-complete

* Corollary: SAT is NP-complete.
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Plan of attack:

SI?T >\

Clique
(thanks, Steve © )
Independent set

l Follow from Cook’s Theorem

Vertex cover

Conclusion: all of the above problems are NP-
complete
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Clique again

* Clique (decision variant):
— Input: undirected graph
G=(V,E),K

— Output: is there a subset C
of V, |C|>K, such that
every pair of vertices in C
has an edge between them
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YES

SAT < Clique g -awn

A for [T

N0

X’

* Given a SAT formula ¢=C,,...,C  over
X,,...,X,, we need to produce
G=(V.,E)and K,

f(x")=x

such that ¢ satisfiable iff G has a clique of
size > K.

* Notation: a literal is either x; or —x;
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SAT < Clique reduction

* For each literal t occurring in ¢, create a
vertex v,

* Create an edge v, — v,. iff:
—tandt’ are not in the same clause, and

—t 1s not the negation of t’
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SAT < Clique example

etandt’ are not in the same clause, and

Edgev,—v. < | .
BEViT Vi * t is not the negation of t’

* Formula: X;vX,vX;, 7X,v Xy, 7 X, vX,
* Graph:

» Claim: ¢ satisﬁéble iff G has a clique of
size > m
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Proof

Edgev,— v, <

etandt’ are not in the same clause, and
* t is not the negation of t’

11/15/07

CG_)” part:

— Take any assignment that
satisfies .

E.g., x,=F, x,=T, x;=F

— Let the set C contain one
satisfied literal per clause

—Cisaclique
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Proof

Edgev,—v. <

etandt’ are not in the same clause, and
* t is not the negation of t’

° 6‘(_,7 part:
— Take any clique C of size > m
(i.e.,=m)
— Create a set of equations that
satisfies selected literals.

E.g., x;=T, x,=F, x,=F

— The set of equations is
consistent and the solution
satisfies @
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Altogether

We constructed a reduction that maps:

—YES inputs to SAT to YES inputs to
Clique

—NO inputs to SAT to NO inputs to Clique
The reduction works in polynomial time
Therefore, SAT < Clique —Clique NP-hard
Clique is in NP — Clique is NP-complete
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Independent set (IS)

¢ Input: undirected graph
G=(V.E)

* Output: is there a subset S of
V, |S|=K such that no pair of
vertices in S has an edge
between them
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Clique<IS ‘gmg~-men "

N0

A for [T
s

X

* Given an Tnput G=(V.E), K to
Clique, need to construct an
input G’=(V",E"), K’ to IS,

H_/
f(x’)=x
such that G has clique of size
>K iff G* has IS of size >K’.
« Construction: K’=K,V’=V E’=E

» Reason: C is a clique in G iff it
is an IS in G’s complement.
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Vertex cover (VC)

Input: undirected graph
G=(V.E)

Output: is there a subset C
of V, |C| < K, such that each
edge in E is incident to at
least one vertex in C.
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ISsVC T R

N0

A’ for [T
2

X

* Given an infput G=(V.E), K to ?S,
need to construct an input
G’=(V’,E”), K’ to VC, such that

— 2

f(x”)=x

G has an IS of size >K iff G” has VC
of size <K,

* Construction: V’=V, E’=E, K’=|V|-K

e Reason: SisanISinGiff V-Sisa
VCinG.
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