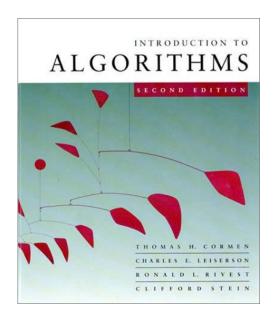


CS 3343 -- Fall 2007



Minimum Spanning Trees

Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

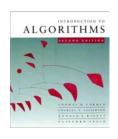
Minimum spanning trees

Input: A connected, undirected graph G = (V, E) with weight function $w : E \to \mathbb{R}$.

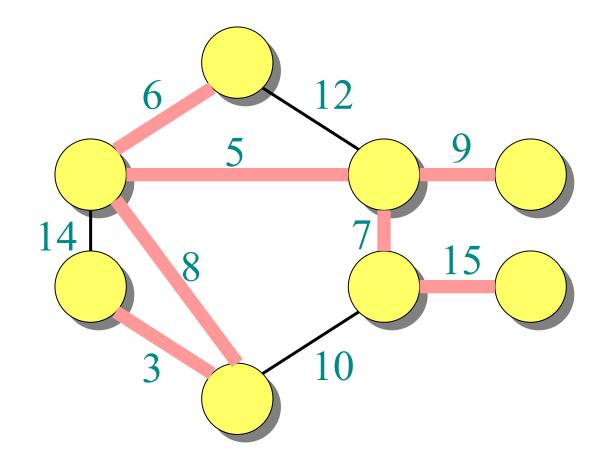
• For simplicity, assume that all edge weights are distinct.

Output: A *spanning tree* T — a tree that connects all vertices — of minimum weight:

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$



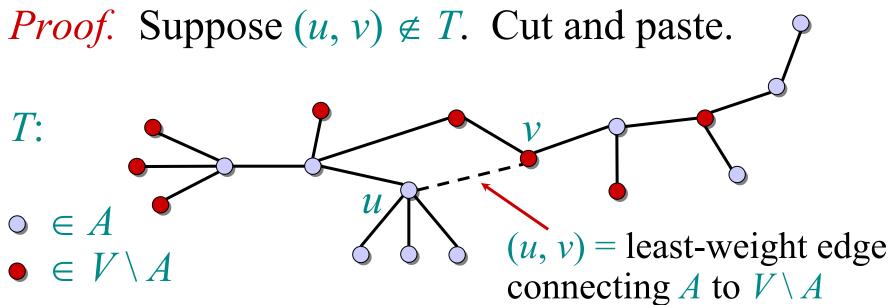
Example of MST

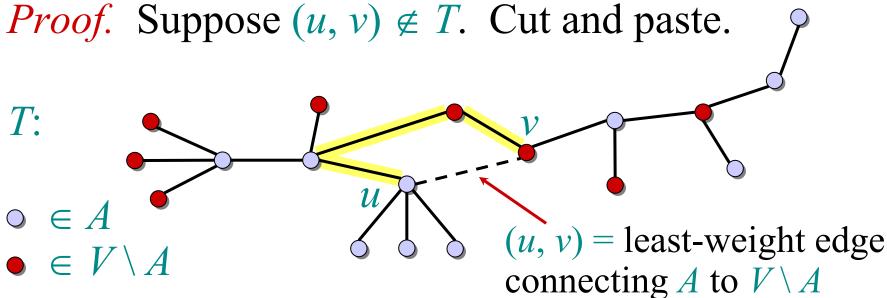


Hallmark for "greedy" algorithms

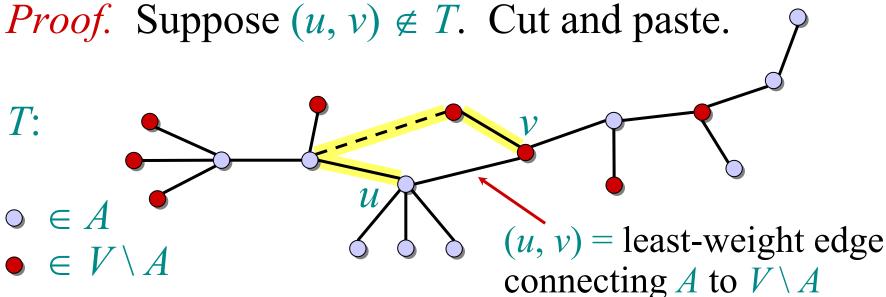
Greedy-choice property
A locally optimal choice
is globally optimal.

Theorem. Let T be the MST of G = (V, E), and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to $V \setminus A$. Then, $(u, v) \in T$.



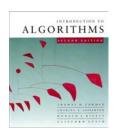


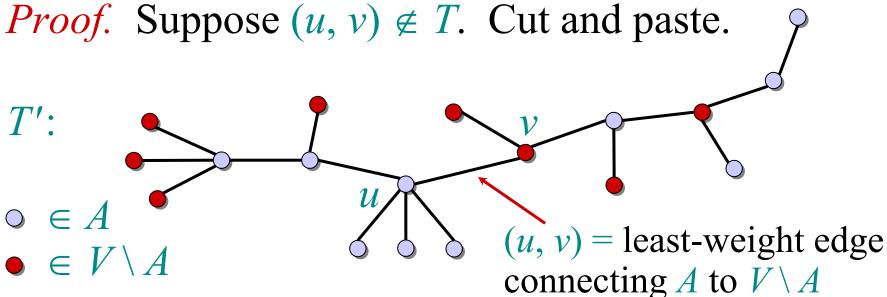
Consider the unique simple path from u to v in T.



Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V \setminus A$.





Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V \setminus A$.

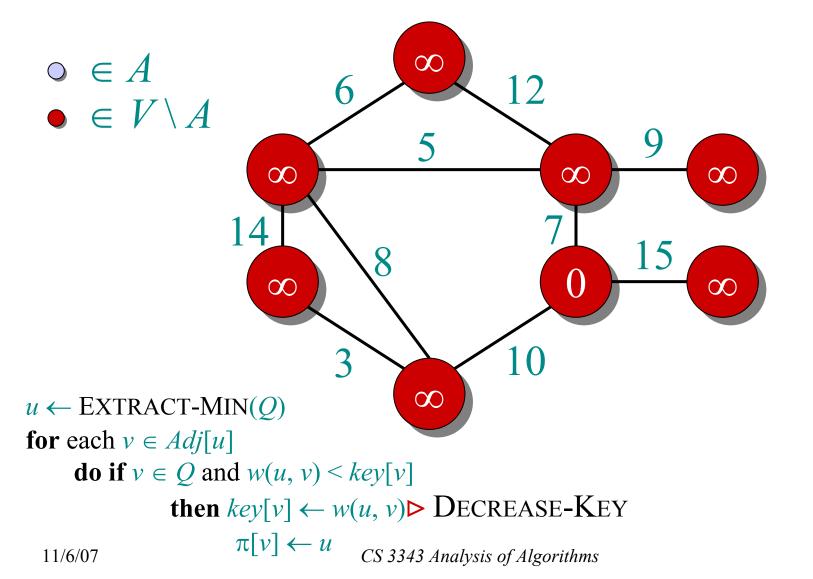
A lighter-weight spanning tree than *T* results.

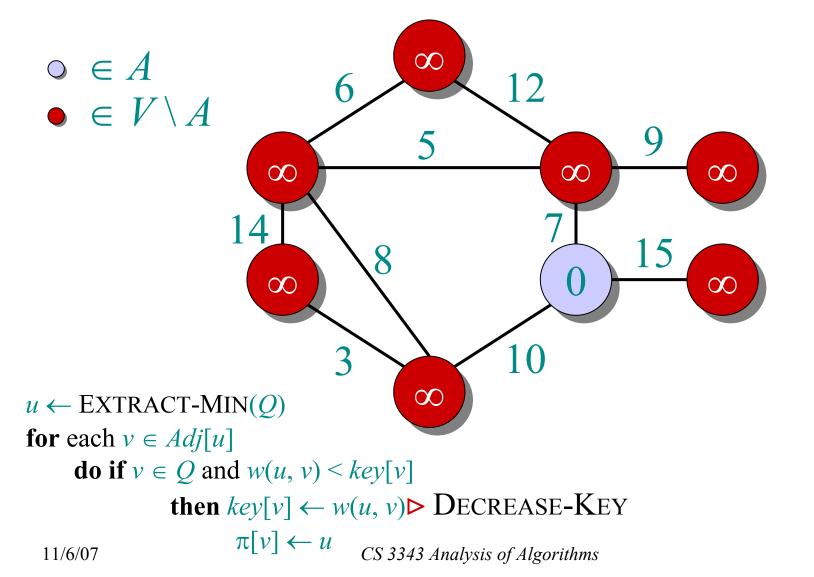
Prim's algorithm

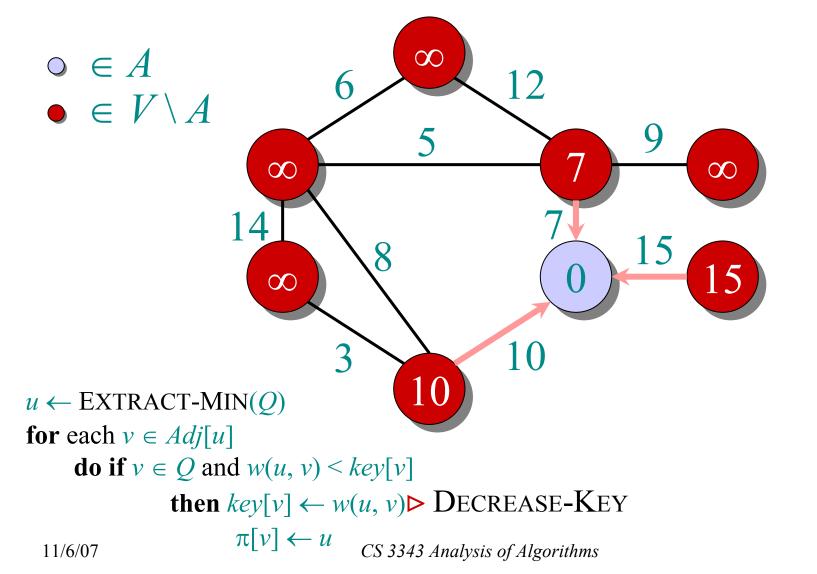
IDEA: Maintain $V \setminus A$ as a priority queue Q. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A.

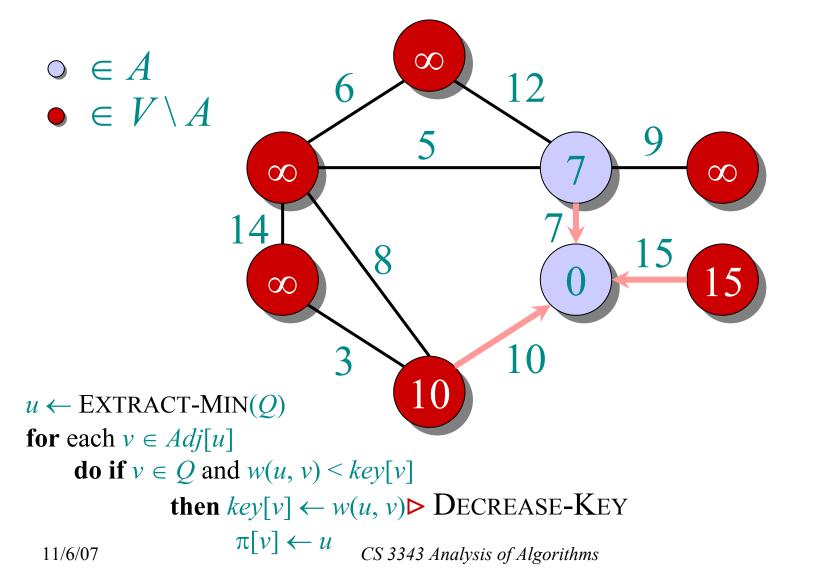
```
Q \leftarrow V
key[v] \leftarrow \infty for all v \in V
key[s] \leftarrow 0 for some arbitrary s \in V
while Q \neq \emptyset
do u \leftarrow \text{EXTRACT-MIN}(Q)
for each v \in Adj[u]
do if v \in Q and w(u, v) < key[v]
then key[v] \leftarrow w(u, v) \triangleright Decrease-Key
\pi[v] \leftarrow u
```

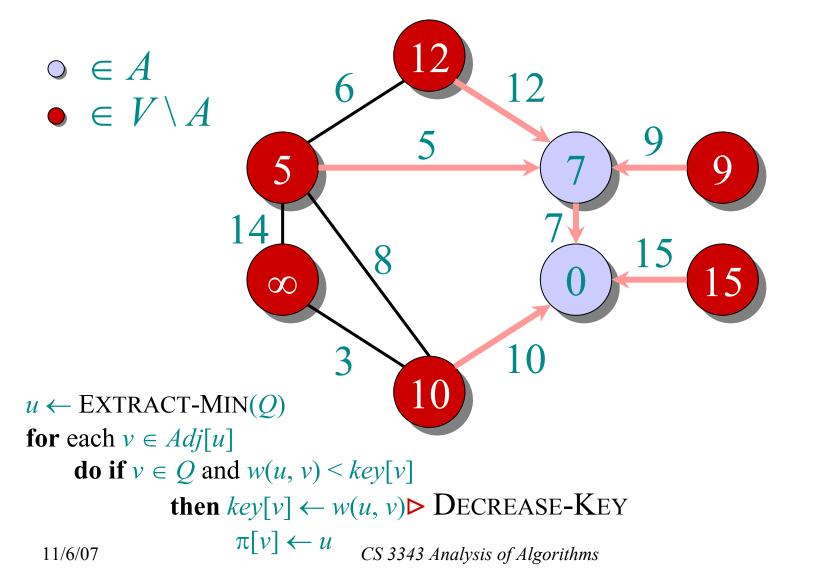
At the end, $\{(v, \pi[v])\}$ forms the MST.

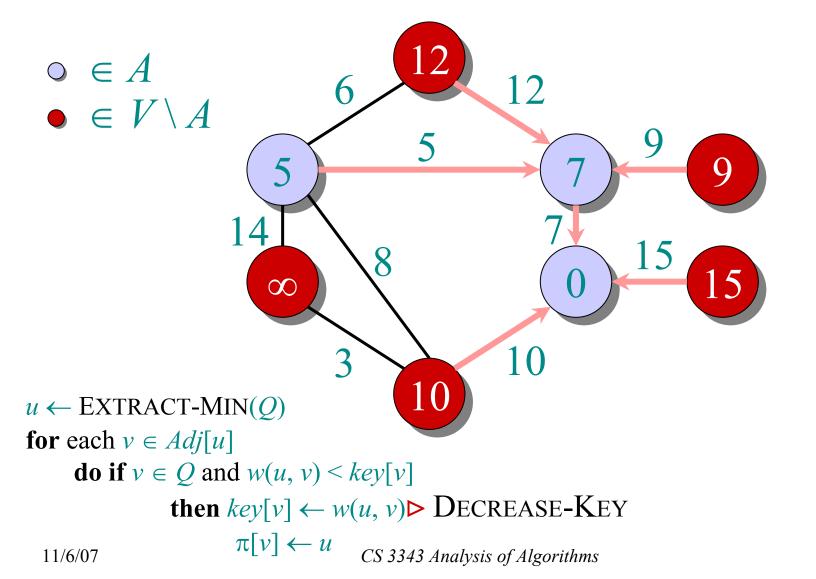


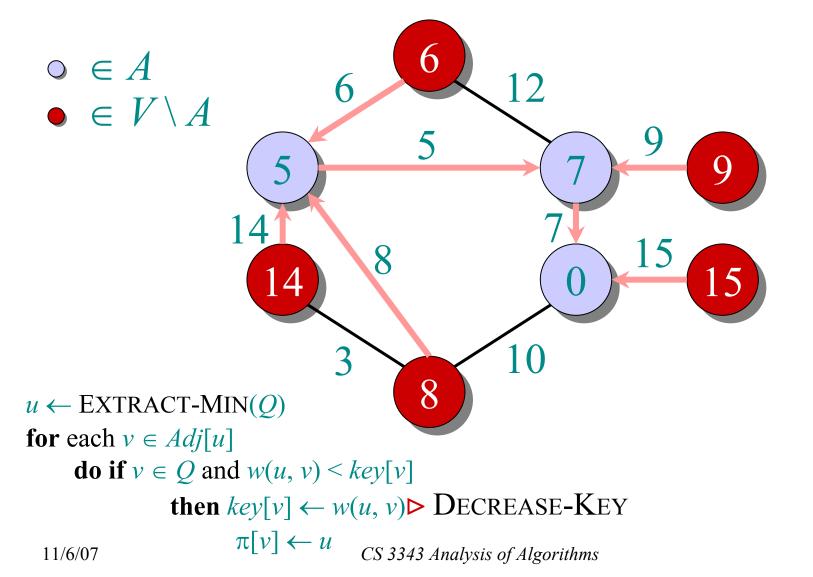


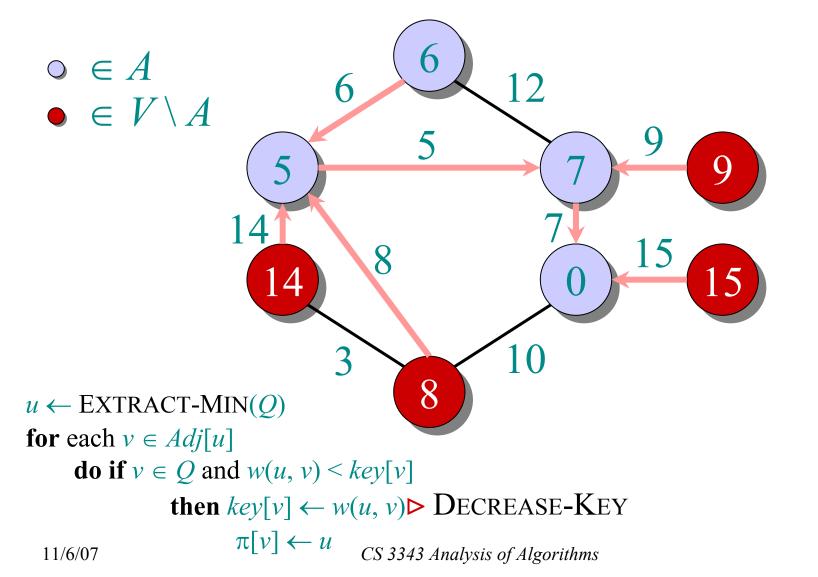


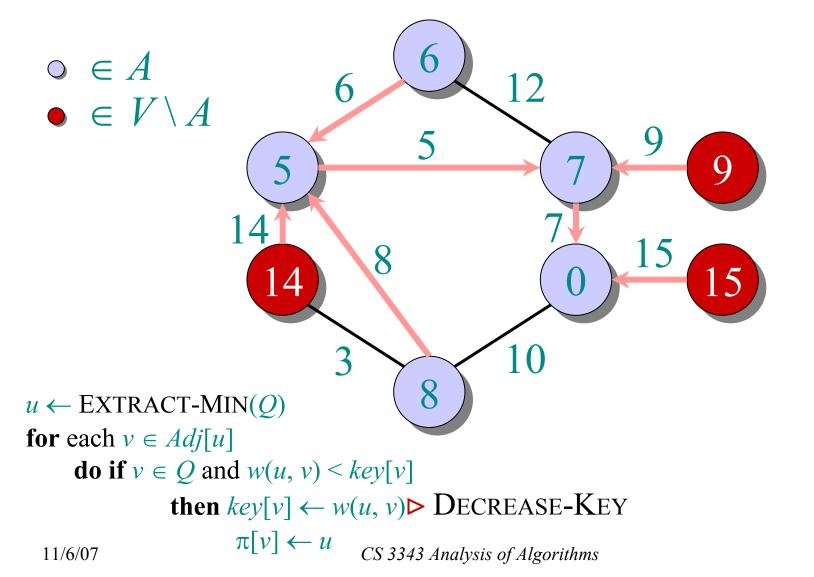


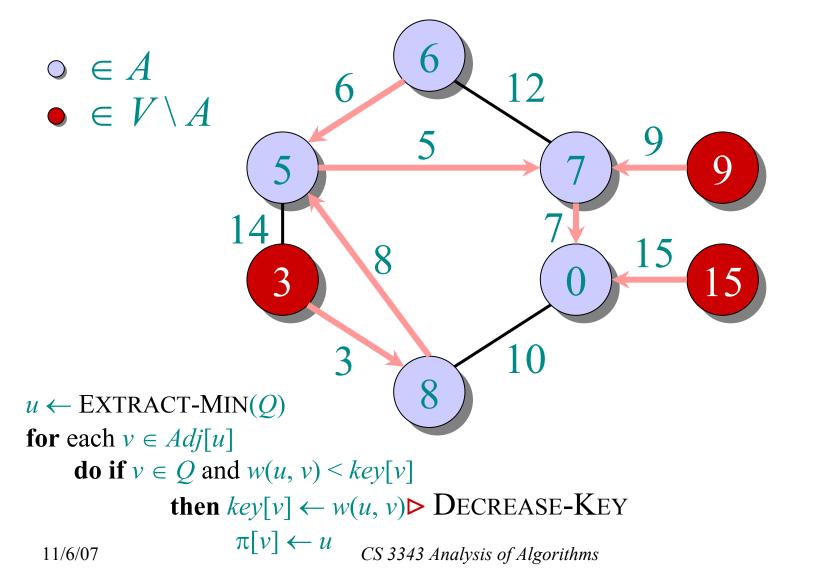


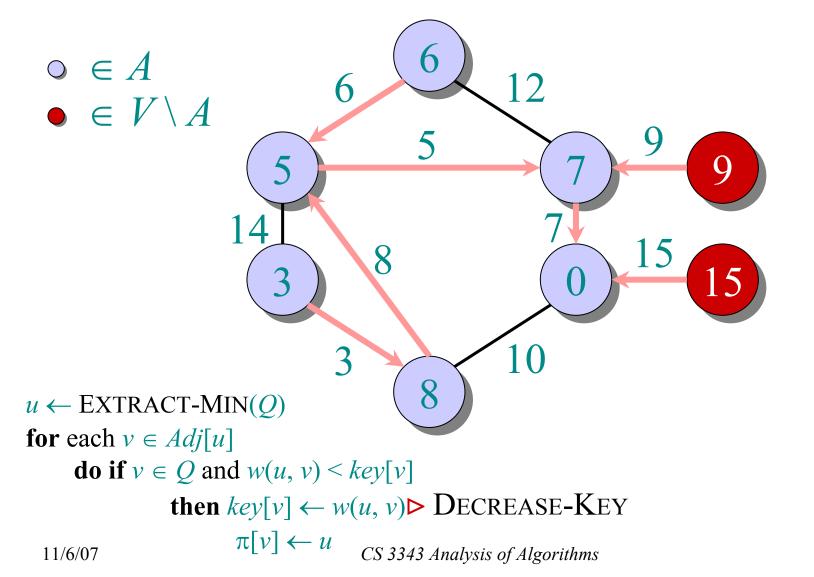


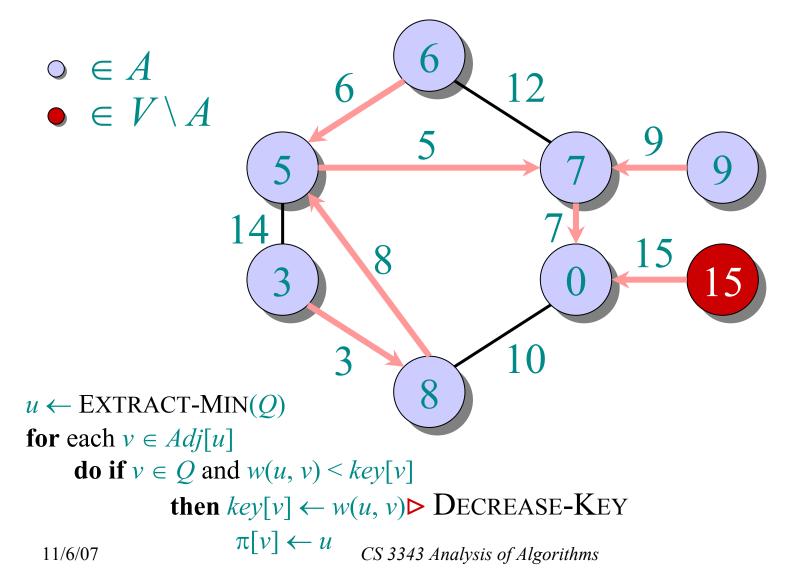


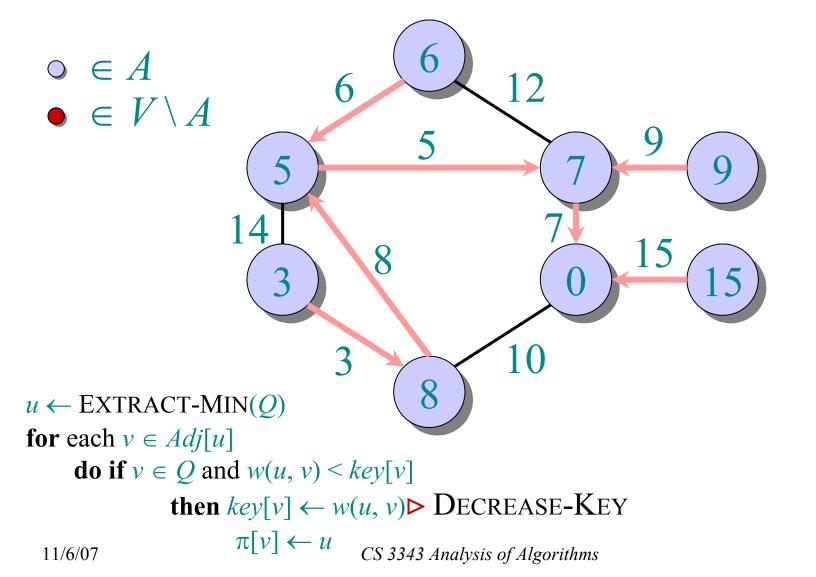












Analysis of Prim

```
\Theta(|V|) \begin{cases} Q \leftarrow V \\ key[v] \leftarrow \infty \text{ for all } v \in V \\ key[s] \leftarrow 0 \text{ for some arbitrary } s \in V \end{cases}
                    while Q \neq \emptyset
                          do u \leftarrow \text{EXTRACT-MIN}(Q)
                               for each v \in Adj[u]
                                      do if v \in Q and w(u, v) < key[v]
                                                 then key[v] \leftarrow w(u, v)
                                                          \pi[v] \leftarrow u
```

Handshaking Lemma $\Rightarrow \Theta(|E|)$ implicit Decrease-Key's.

Time =
$$\Theta(|V|) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E|) \cdot T_{\text{DECREASE-KEY}}$$

Analysis of Prim (continued)

Time =
$$\Theta(|V|) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E|) \cdot T_{\text{DECREASE-KEY}}$$

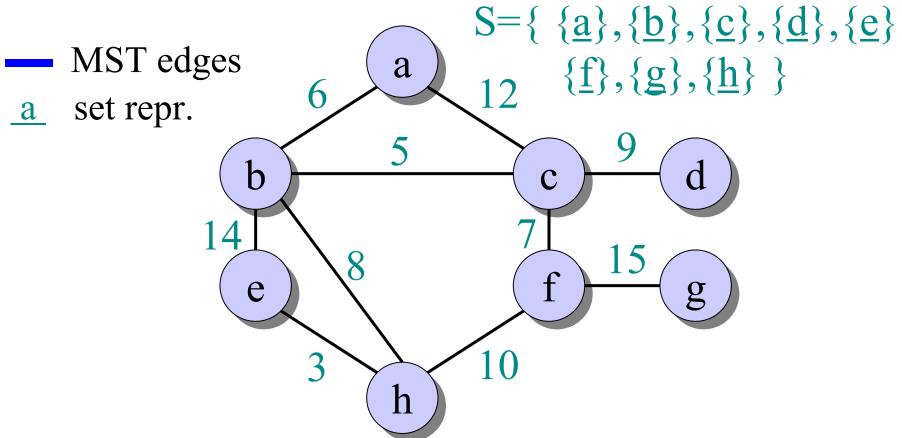
Q	T _{EXTRACT-MIN}	T _{DECREASE-KE}	Total
array	O(V)	<i>O</i> (1)	$O(V ^2)$
binary heap	$O(\log V)$	$O(\log V)$	$O(E \log V)$
Fibonacci heap	$O(\log V)$ amortized	O(1) O amortized	$(E + V \log V)$ worst case

Kruskal's algorithm

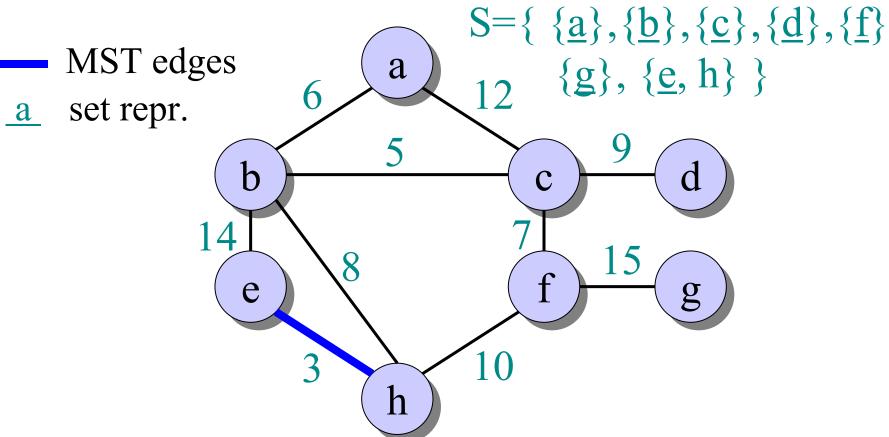
IDEA (again greedy):

Repeatedly pick edge with smallest weight as long as it does not form a cycle.

- The algorithm creates a set of trees (a **forest**)
- During the algorithm the added edges merge the trees together, such that in the end only one tree remains
- The correctness of this greedy strategy is not obvious and needs to be proven. (Proof skipped here.)



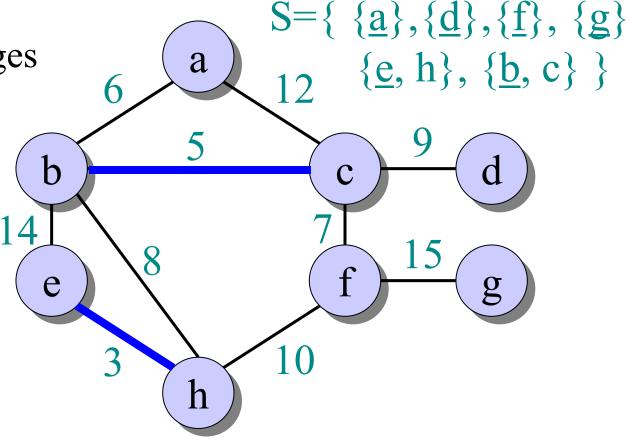
Every node is a single tree.

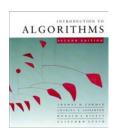


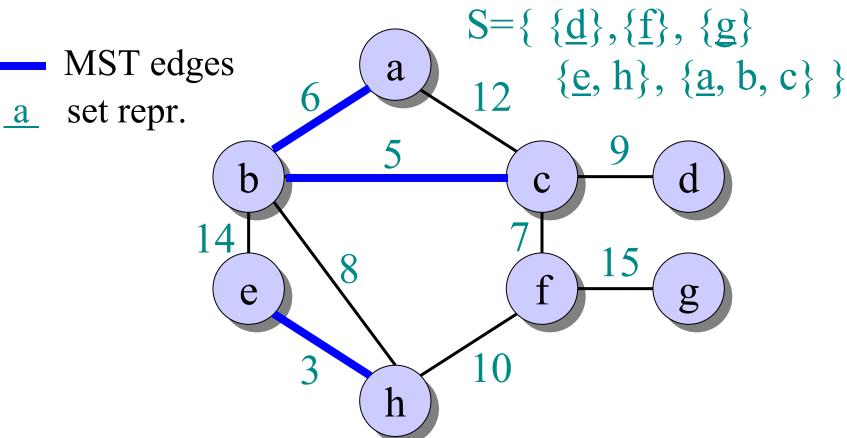
Edge 3 merged two singleton trees.

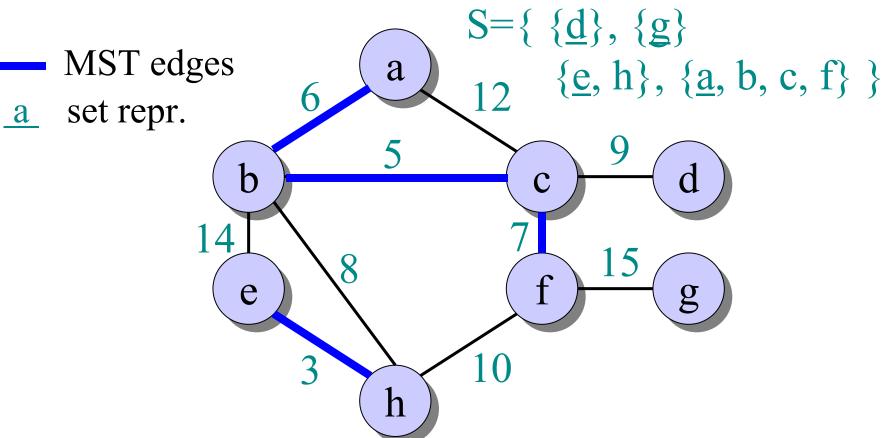
MST edges

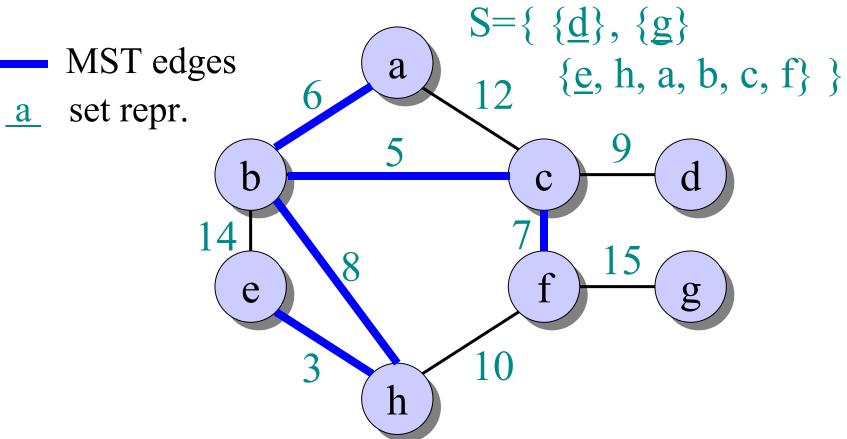
a set repr.



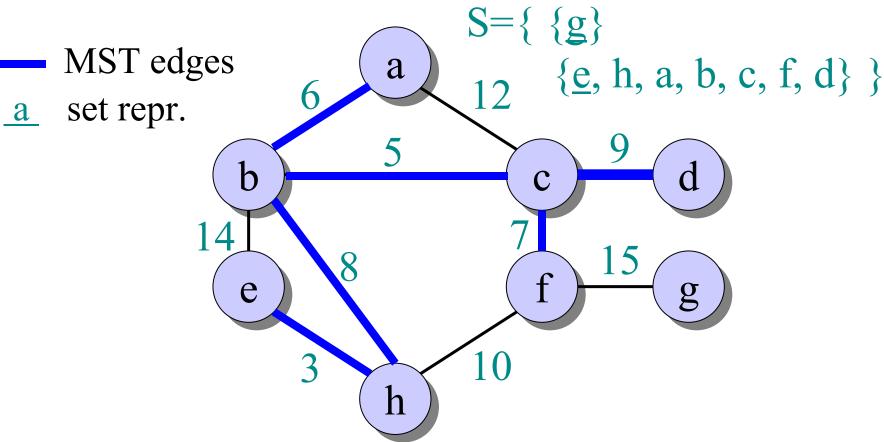


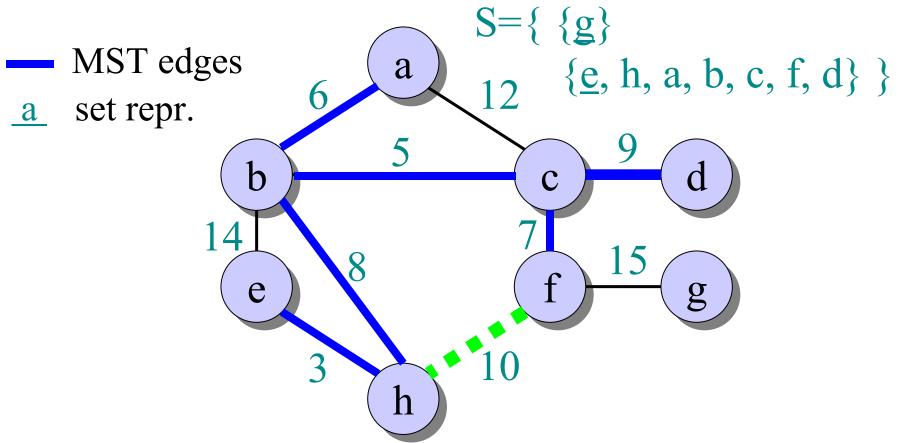




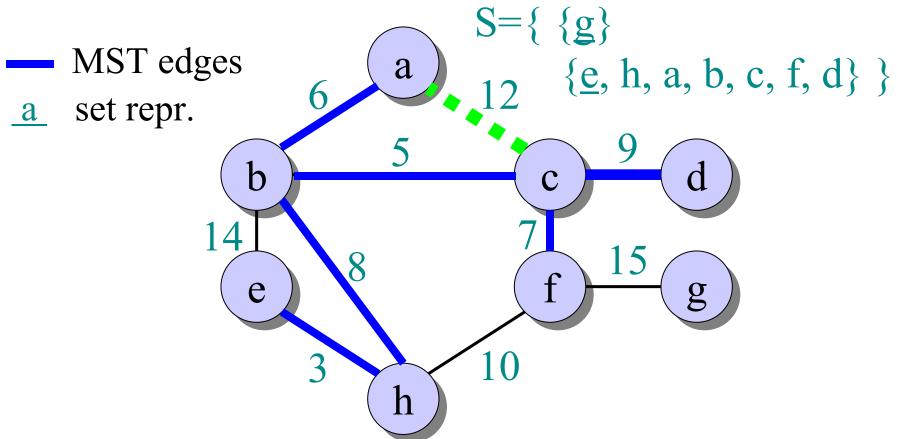


Edge 8 merged the two bigger trees.

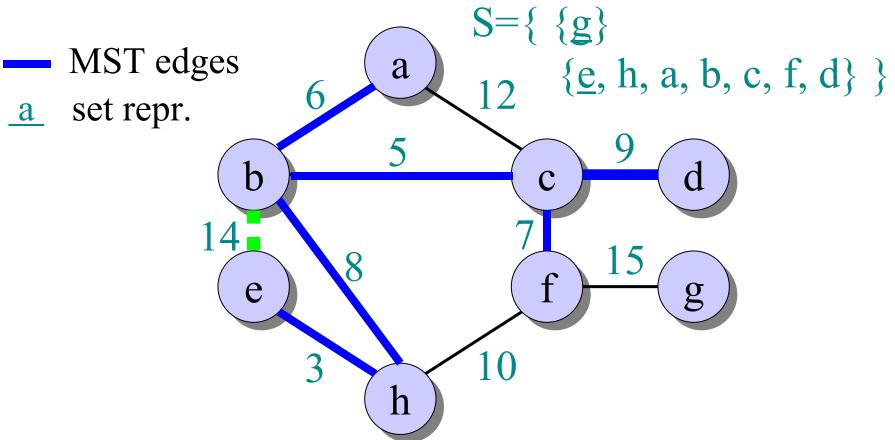




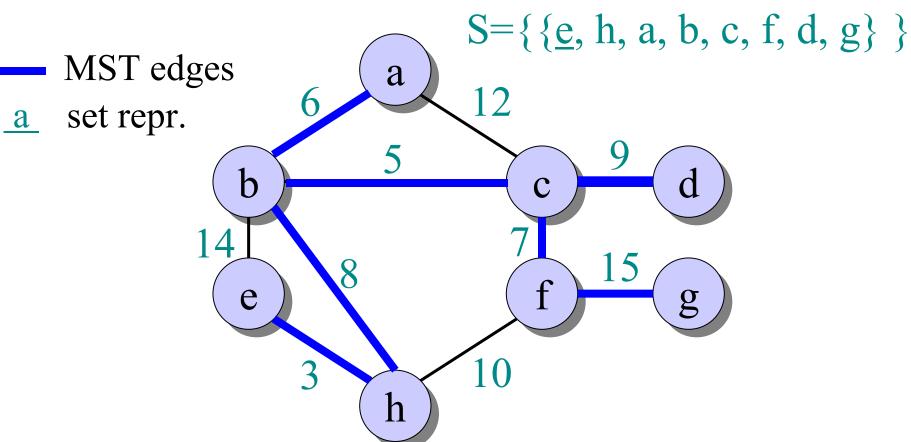
Skip edge 10 as it would cause a cycle.



Skip edge 12 as it would cause a cycle.



Skip edge 14 as it would cause a cycle.



Disjoint-set data structure (Union-Find)

- Maintains a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}.$
- Each set S_i has one element distinguished as the representative element.
- Supports operations:
- O(1) MAKE-SET(x): adds new set $\{x\}$ to S
- $O(\alpha(n))$ Union(x, y): replaces sets S_x , S_y with $S_x \cup S_y$
- $O(\alpha(n))$ FIND-SET(x): returns the representative of the set S_x containing element x
- $1 < \alpha(n) < \log^*(n) < \log(\log(n)) < \log(n)$

Kruskal's algorithm

IDEA: Repeatedly pick edge with smallest weight as long as it does not form a cycle.

```
S \leftarrow \emptyset > S will contain all MST edges
 O(|V|)
                 for each v \in V do MAKE-SET(v)
O(|E|\log|E|) Sort edges of E in non-decreasing order according to w
                 For each (u,v) \in E taken in this order do
 O(|E|)
    O(\alpha(|V|)) \begin{cases} \textbf{if } FIND-Set(u) \neq FIND-Set(v) > u,v \text{ in different trees} \\ A \leftarrow A \cup \{(u,v)\} \\ UNION(u,v) > Edge(u,v) \text{ connects the two trees} \end{cases}
 Runtime: O(|V| + |E| \log |E| + |E| \alpha(|V|)) = O(|E| \log |E|)
```


MST algorithms

- Prim's algorithm:
 - Maintains one tree
 - Runs in time $O(|E| \log |V|)$, with binary heaps.
- Kruskal's algorithm:
 - Maintains a forest and uses the disjoint-set data structure
 - Runs in time $O(|E| \log |E|)$
- Best to date: Randomized algorithm by Karger, Klein, Tarjan [1993]. Runs in expected time O(|V| + |E|)