
CS 3343 Analysis of Algorithms 110/30/07

CS 3343 – Fall 2007

Graphs
Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

CS 3343 Analysis of Algorithms 210/30/07

Graphs
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E ⊆ V × V of edges.
In an undirected graph G = (V, E), the edge
set E consists of unordered pairs of vertices.
In either case, we have |E | = O(|V| 2).

(Review CLRS, Appendix B.4 and B.5.)

CS 3343 Analysis of Algorithms 310/30/07

Adjacency-matrix
representation

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

A[i, j] = 1 if (i, j) ∈ E,
0 if (i, j) ∉ E.

22 11

33 44

A 1 2 3 4
1
2
3
4

0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 0

Θ(|V| 2) storage
⇒ dense
representation.

CS 3343 Analysis of Algorithms 410/30/07

Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

22 11

33 44

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, | Adj[v] | = out-degree(v).

CS 3343 Analysis of Algorithms 510/30/07

Adjacency-list representation

Handshaking Lemma:
Every edge is counted twice
• For undirected graphs:

∑v∈V degree(v) = 2 |E |
• For digraphs:

∑v∈V in-degree(v) + ∑v∈V out-degree(v) = 2 | E |

⇒ adjacency lists use Θ(|V| + |E|) storage
⇒ a sparse representation

CS 3343 Analysis of Algorithms 610/30/07

Graph Traversal

Let G=(V,E) be a (directed or undirected)
graph, given in adjacency list representation.

|V| = n , |E| = m

A graph traversal visits every vertex:
• Breadth-first search (BFS)
• Depth-first search (DFS)

CS 3343 Analysis of Algorithms 710/30/07

Depth-First Search (DFS)

DFS_rec(G, v)
visit v // time++
for each w adjacent to v do

if w is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)

DFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0
for each vertex v ∈ V do

if v is unvisited
DFS_rec(G,v)

O(n)

O(n)
without
DFS_rec

O(deg(v))
without
recursive call

O(1)

⇒ With Handshaking Lemma, all recursive calls are O(m), for
a total of O(n + m) runtime

CS 3343 Analysis of Algorithms 810/30/07

DFS runtime

• Each vertex is visited at most once ⇒ O(n) time
• The body of the for loops (except the recursive call) take constant
time per graph edge
• All for loops take O(m) time
• Total runtime is O(n+m) = O(|V| + |E|)

CS 3343 Analysis of Algorithms 910/30/07

Breadth-First Search (BFS)
BFS(G=(V,E))

Mark all vertices in G as “unvisited” // time=0
Initialize empty queue Q
for each vertex v ∈ V do

if v is unvisited
visit v // time++
Q.enqueue(v)
BFS_iter(G)

BFS_iter(G)
while Q is non-empty do

v = Q.dequeue()
for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v,w) to T
Q.enqueue(w)

O(n)
O(1)

O(n)
without
BFS_iter

O(deg(v))
O(m)

CS 3343 Analysis of Algorithms 1010/30/07

BFS runtime

• Each vertex is marked as unvisited in the beginning ⇒ O(n) time
• Each vertex is marked at most once, enqueued at most once,
and therefore dequeued at most once
• The time to process a vertex is proportional to the size of its
adjacency list (its degree), since the graph is given in adjacency list
representation
⇒ O(m) time

• Total runtime is O(n+m) = O(|V| + |E|)

