| aaire CS 3343 — Fall 2007

[W :
“\‘ i

ALGORITHMS

1 il
|
\\"l —
1 ‘ l THOMAS H CORMEN
CHARLES E LEISERSON
RONALD L. RIVEST
CLIFFORD S TEIN

Graphs

Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

10/30/07 CS 3343 Analysis of Algorithms

I : (‘;0 |§ ITHMS
“w~ Graphs

Definition. A directed graph (digraph)
G = (V, E) 1s an ordered pair consisting of
* a set I of vertices (singular: vertex),
caset £ V' x Vof edges.

In an undirected graph G = (V, E), the edge
set £ consists of unordered pairs of vertices.

In either case, we have |E| = O(|V]).

(Review CLRS, Appendix B.4 and B.5.)

10/30/07 CS 3343 Analysis of Algorithms

=T Adjacency-matrix

N

' representation

The adjacency matrix of a graph G = (V, E), where
V=1{1,2,...,n},1sthe matrix A[1 . . n, 1 .. n]

given by
.) Laf(i,)) € E,
Ali, /] {OH@ﬁ&E.

A1 2 3 4
g c 110 1 1 O O(|V]?) storage
’ 210 01 0 = dense
a a 310 0 O O representation.
410 01 O

10/30/07 CS 3343 Analysis of Algorithms 3

“ " Adjacency-list representation

1\‘

An adjacency list of a vertex v € J'1s the list Adj[v]
of vertices adjacent to v.

Adj[1]= {2, 3}
@’G Adi2] -)
Adi[3]= {}
a a Aaé':4

1=135

For undirected graphs, |Adj[v]| = degree(v).

For digraphs, | Adj[v] | = out-degree(v).

10/30/07 CS 3343 Analysis of Algorithms 4

I .:(‘;0‘]‘{ ITHMS . . .
“<" Adjacency-list representation

Handshaking Lemma:
Every edge is counted twice
 For undirected graphs:
2..ydegree(v) =2|E|
 For digraphs:
2.y in-degree(v) + 2. _, out-degree(v) =2 | E |

—> adjacency lists use O(|V] + |E|) storage
—> a sparse representation

10/30/07 CS 3343 Analysis of Algorithms

ALGORITHMS

“ <" Graph Traversal

mny

Let G=(V,E) be a (directed or undirected)
graph, given 1n adjacency list representation.

Vi=n,|El=m
A graph traversal visits every vertex:

* Breadth-first search (BFS)
* Depth-first search (DFS)

10/30/07 CS 3343 Analysis of Algorithms

ALGORITHMS

e Depth-First Search (DFS)

DFS(G=(V,E))
O(n) Mark all vertices in GG as “unvisited” // time=0
0 (for each vertex v € "do
(n) if v is unvisited
without
DFS rec | DFS_I'CC(G,V)

DES rec(G, v)
O(1) visit v // time++
' for each w adjacent to v do

O(deg(v)) . if w Al; gnvisited
without edge (v,w) to tree 7T
recursive call k DFS rec(G,w)

— With Handshaking Lemma, all recursive calls are O(m), for

a total of O(»n + m) runtime
10/30/07 CS 3343 Analysis of Algorithms

ALGORITHMS

v DFS runtime

mny

» Each vertex 1s visited at most once = O(n) time

* The body of the for loops (except the recursive call) take constant
time per graph edge

 All for loops take O(m2) time

* Total runtime 1s O(n+m) = O(|V| + |[E|)

10/30/07 CS 3343 Analysis of Algorithms 8

ALGORITHMS

=" Breadth-First Search (BFS)

mny

BFS(G=(V.E))
Mark all vertices in G as “unvisited” // time=0
O(n) .
o(1) Initialize empty queue O
for each vertex v € "do
if v 1s unvisited

(

O(n) visit v // time++

without O.enqueue(v)

B jter | BFS_iter(G)

BES iter(G)

—— while O 1s non-empty do

v = (.dequeue()

for each w adjacent to v do

if w is unvisited
O(m) -<O(deg(v))< visit w // time++
Add edge (v,w)to T’
‘ \ O.enqueue(w)

S~

10/30/07 CS 3343 Analysis of Algorithms 9

ALGORITHMS

v BFS runtime

mny

» Each vertex is marked as unvisited in the beginning = O(n) time
» Each vertex 1s marked at most once, enqueued at most once,

and therefore dequeued at most once

 The time to process a vertex 1s proportional to the size of its
adjacency list (its degree), since the graph 1s given in adjacency list
representation

= O(m) time

 Total runtime 1s O(n+m) = O(|V| + |E|)

10/30/07 CS 3343 Analysis of Algorithms 10

