
CS 2233 Discrete Mathematical Structures – Fall 08

10/22/08

6. Homework
Due 11/3/08 before class

1. Guessing
For each of the following recurrences use either the expansion method or the re-
cursion tree method to find a guess of what it could solve to. Make your guess as
tight as possible. (Hint: Use log3 n instead of log2 n.)

(a) (2 points) T (1) = 1, and T (n) = 3T (n
3 ) + 1 for n ≥ 2.

(b) (2 points) T (1) = 1, and T (n) = 3T (n
3 ) + n for n ≥ 2.

(c) (2 points) T (1) = 1, and T (n) = 3T (n
3 ) + n2 for n ≥ 2.

2. Big-Oh Induction (3 points)
Let T (n) = 2T (n

2 ) + 5n2 for n ≥ 2 and T (1) = 1.
Use induction to prove that T (n) ∈ O(n2).

3. Master Theorem
Use the master theorem to prove the following claims. Justify your answers.

(a) (2 points) T (n) = 9T (n
3 ) + 1

(b) (2 points) T (n) = 9T (n
3 ) + n

(c) (2 points) T (n) = 16T (n
4 ) + n2

(d) (2 points) T (n) = 8T (n
2 ) + n4

4. Divide and Conquer
Suppose you want to compute n∗5 in a programming language that does not have
a built-in multiplication operator. The only operators you are allowed to use are
addition, subtraction, multiplication by 2, and division by 2 (the latter two
are allowed because they only involve shifting on the bit level).

(a) (3 points) Write a divide-and-conquer algorithm int multiply(int n) that
computes n ∗ 5, for any n ≥ 1, using only the allowed operations. Your
algorithm should run in O(log n) time. (Hint: Use the fact that n ∗ 5 =
5 + 5 + 5 + . . . + 5.)

(b) (1 point) What is the runtime recurrence for your algorithm?

(c) (1 point) Why does the runtime recurrence solve to O(log n)?


