
1/29/15 CMPS 3130/6130 Computational Geometry 1

CMPS 3130/6130 Computational Geometry
Spring 2015

Triangulations and
Guarding Art Galleries

Carola Wenk

1/29/15 CMPS 3130/6130 Computational Geometry 2

Guarding an Art Gallery

• Problem: Given the floor plan of an art gallery as a simple polygon P
in the plane with n vertices. Place (a small number of) cameras/guards
on vertices of P such that every point in P can be seen by some
camera.

Region enclosed by simple polygonal
chain that does not self-intersect.

1/29/15 CMPS 3130/6130 Computational Geometry 3

Guarding an Art Gallery

• There are many different variations:
– Guards on vertices only, or in the interior as well
– Guard the interior or only the walls
– Stationary versus moving or rotating guards

• Finding the minimum number of guards is
NP-hard (Aggarwal ’84)

• First subtask: Bound the number of guards
that are necessary to guard a polygon in the
worst case.

1/29/15 CMPS 3130/6130 Computational Geometry 4

Guard Using Triangulations
• Decompose the polygon into shapes that are easier to handle:

triangles
• A triangulation of a polygon P is a decomposition of P into

triangles whose vertices are vertices of P. In other words, a
triangulation is a maximal set of non-crossing diagonals.

diagonal

1/29/15 CMPS 3130/6130 Computational Geometry 5

Guard Using Triangulations
• A polygon can be triangulated in many different ways.
• Guard polygon by putting one camera in each triangle:

Since the triangle is convex, its guard will guard the
whole triangle.

1/29/15 CMPS 3130/6130 Computational Geometry 6

Triangulations of Simple Polygons
Theorem 1: Every simple polygon admits a

triangulation, and any triangulation of a simple
polygon with n vertices consists of exactly n-2
triangles.

Proof: By induction.
• n=3:
• n>3: Let u be leftmost vertex, and v

and w adjacent to v. If vw does not
intersect boundary of P: #triangles
= 1 for new triangle + (n-1)-2 for
remaining polygon = n-2

u

w

v P

1/29/15 CMPS 3130/6130 Computational Geometry 7

Triangulations of Simple Polygons
Theorem 1: Every simple polygon admits a

triangulation, and any triangulation of a simple
polygon with n vertices consists of exactly n-2
triangles.

If vw intersects boundary of P: Let
u’u be the the vertex furthest to the
left of vw. Take uu’ as diagonal,
which splits P into P1 and P2.
#triangles in P = #triangles in P1 +
#triangles in P2 = |P1|-2 + |P2|-2 =
|P1|+|P2|-4 = n+2-4 = n-2

u

w

v

u’

P

P1

P2

1/29/15 CMPS 3130/6130 Computational Geometry 8

3-Coloring
• A 3-coloring of a graph is an assignment of

one out of three colors to each vertex such
that adjacent vertices have different colors.

1/29/15 CMPS 3130/6130 Computational Geometry 9

3-Coloring Lemma
Lemma: For every triangulated polgon there is a 3-coloring.

Proof: Consider the dual graph of the triangulation:
– vertex for each triangle
– edge for each edge between triangles

1/29/15 CMPS 3130/6130 Computational Geometry 10

3-Coloring Lemma
Lemma: For every triangulated polgon there is a 3-coloring.

The dual graph is a tree (connected acyclic graph): Removing
an edge corresponds to removing a diagonal in the polygon
which disconnects the polygon and with that the graph.

1/29/15 CMPS 3130/6130 Computational Geometry 11

3-Coloring Lemma
Lemma: For every triangulated polgon there is a 3-coloring.
Traverse the tree (DFS). Start with a triangle and give
different colors to vertices. When proceeding from one
triangle to the next, two vertices have known colors, which
determines the color of the next vertex.

1/29/15 CMPS 3130/6130 Computational Geometry 12

Art Gallery Theorem

Theorem 2: For any simple polygon with n vertices
guards are sufficient to guard the whole polygon.

There are polygons for which guards are necessary.
n
3  n

3 
Proof: For the upper bound, 3-color any triangulation of the
polygon and take the color with the minimum number of
guards.
Lower bound:

n
3  spikes

Need one guard per spike.

1/29/15 CMPS 3130/6130 Computational Geometry 13

Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the
proof of Theorem 1.

• There is a very complicated O(n) time algorithm
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)

1/29/15 CMPS 3130/6130 Computational Geometry 14

Monotone Polygons

• A simple polygon P is called monotone with respect to a
line l iff for every line l’ perpendicular to l the intersection of
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis l’

l

x-monotone
(monotone

w.r.t l)

1/29/15 CMPS 3130/6130 Computational Geometry 15

Monotone Polygons

• A simple polygon P is called monotone with respect to a
line l iff for every line l’ perpendicular to l the intersection of
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis l’

l

NOT x-monotone
(NOT monotone

w.r.t l)

1/29/15 CMPS 3130/6130 Computational Geometry 16

Monotone Polygons

• A simple polygon P is called monotone with respect to a
line l iff for every line l’ perpendicular to l the intersection of
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis

l

NOT monotone w.r.t
any line l

l’

1/29/15 CMPS 3130/6130 Computational Geometry 17

Test Monotonicity
How to test if a polygon is x-monotone?

– Find leftmost and rightmost vertices, O(n) time
→ Splits polygon boundary in upper chain and lower chain
– Walk from left to right along each chain, checking that x-

coordinates are non-decreasing. O(n) time.

1/29/15 CMPS 3130/6130 Computational Geometry 18

Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the
proof of Theorem 1.

• There is a very complicated O(n) time algorithm
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)

