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Guarding an Art Gallery

• Problem: Given the floor plan of an art gallery as a simple polygon P
in the plane with n vertices. Place (a small number of) cameras/guards 
on vertices of P such that every point in P can be seen by some 
camera.

Region enclosed by simple polygonal 
chain that does not self-intersect.
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Guarding an Art Gallery

• There are many different variations:
– Guards on vertices only, or in the interior as well
– Guard the interior or only the walls
– Stationary versus moving or rotating guards

• Finding the minimum number of guards is 
NP-hard (Aggarwal ’84)

• First subtask: Bound the number of guards 
that are necessary to guard a polygon in the 
worst case.



1/29/15 CMPS 3130/6130 Computational Geometry 4

Guard Using Triangulations
• Decompose the polygon into shapes that are easier to handle: 

triangles
• A triangulation of a polygon P is a decomposition of P into 

triangles whose vertices are vertices of P. In other words, a 
triangulation is a maximal set of non-crossing diagonals.

diagonal
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Guard Using Triangulations
• A polygon can be triangulated in many different ways.
• Guard polygon by putting one camera in each triangle: 

Since the triangle is convex, its guard will guard the 
whole triangle.
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Triangulations of Simple Polygons
Theorem 1: Every simple polygon admits a 

triangulation, and any triangulation of a simple 
polygon with n vertices consists of exactly n-2
triangles.

Proof: By induction.
• n=3: 
• n>3: Let u be leftmost vertex, and v

and w adjacent to v. If vw does not 
intersect boundary of P: #triangles 
= 1 for new triangle + (n-1)-2 for 
remaining polygon = n-2

u

w

v P
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Triangulations of Simple Polygons
Theorem 1: Every simple polygon admits a 

triangulation, and any triangulation of a simple 
polygon with n vertices consists of exactly n-2
triangles.

If vw intersects boundary of P: Let 
u’u be the the vertex furthest to the 
left of vw. Take uu’ as diagonal, 
which splits P into P1 and P2. 
#triangles in P = #triangles in P1 +
#triangles in P2 = |P1|-2 + |P2|-2 = 
|P1|+|P2|-4 = n+2-4 = n-2

u

w

v

u’

P

P1

P2
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3-Coloring
• A 3-coloring of a graph is an assignment of 

one out of three colors to each vertex such 
that adjacent vertices have different colors.



1/29/15 CMPS 3130/6130 Computational Geometry 9

3-Coloring Lemma
Lemma: For every triangulated polgon there is a 3-coloring.

Proof: Consider the dual graph of the triangulation:
– vertex for each triangle
– edge for each edge between triangles
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3-Coloring Lemma
Lemma: For every triangulated polgon there is a 3-coloring.

The dual graph is a tree (connected acyclic graph): Removing 
an edge corresponds to removing a diagonal in the polygon 
which disconnects the polygon and with that the graph.
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3-Coloring Lemma
Lemma: For every triangulated polgon there is a 3-coloring.
Traverse the tree  (DFS). Start with a triangle and give 
different colors to vertices. When proceeding from one 
triangle to the next, two vertices have known colors, which 
determines the color of the next vertex.
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Art Gallery Theorem

Theorem 2: For any simple polygon with n vertices      
guards are sufficient to guard the whole polygon.        

There are polygons for which       guards are necessary.
n
3  n

3 
Proof: For the upper bound, 3-color any triangulation of the 
polygon and take the color with the minimum number of 
guards.
Lower bound:

n
3  spikes

Need one guard per spike.
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Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the 
proof of Theorem 1.

• There is a very complicated O(n) time algorithm 
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time 
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)
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Monotone Polygons

• A simple polygon P is called monotone with respect to a 
line l iff for every line l’ perpendicular to l the intersection of 
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis l’

l

x-monotone
(monotone 

w.r.t l)
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Monotone Polygons

• A simple polygon P is called monotone with respect to a 
line l iff for every line l’ perpendicular to l the intersection of 
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis l’

l

NOT x-monotone
(NOT monotone 

w.r.t l)
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Monotone Polygons

• A simple polygon P is called monotone with respect to a 
line l iff for every line l’ perpendicular to l the intersection of 
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis

l

NOT monotone w.r.t 
any line l

l’
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Test Monotonicity
How to test if a polygon is x-monotone?

– Find leftmost and rightmost vertices, O(n) time
→ Splits polygon boundary in upper chain and lower chain
– Walk from left to right along each chain, checking that x-

coordinates are non-decreasing. O(n) time.
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Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the 
proof of Theorem 1.

• There is a very complicated O(n) time algorithm 
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time 
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)


