
1/22/15 CMPS 3130/6130 Computational Geometry 1

CMPS 3130/6130 Computational Geometry
Spring 2015

Plane Sweep Algorithms II
Carola Wenk

1/22/15 CMPS 3130/6130 Computational Geometry 2

Geometric Intersections

• Important and basic problem in Computational
Geometry

• Solid modeling: Build shapes by applying set
operations (intersection, union).

• Robotics: Collision detection and avoidance
• Geographic information systems: Overlay two

subdivisions (e.g., road network and river
network)

• Computer graphics: Ray shooting to render scenes

1/22/15 CMPS 3130/6130 Computational Geometry 3

Line Segment Intersection

• Input: A set S={s1, …, sn} of (closed) line
segments in R2

• Output: All intersection points between segments
in S

1/22/15 CMPS 3130/6130 Computational Geometry 4

Line Segment Intersection

• n line segments can intersect as few as 0 and as many as
=O(n2) times

• Simple algorithm: Try out all pairs of line segments
→ Takes O(n2) time
→ Is optimal in worst case

• Challenge: Develop an output-sensitive algorithm
– Runtime depends on size k of the output
– Here: 0  k  c n2 , where c is a constant
– Our algorithm will have runtime: O((n+k) log n)

– Best possible runtime: O(n log n + k)
→ O(n2) in worst case, but better in general

n
2

1/22/15 CMPS 3130/6130 Computational Geometry 5

Complexity

• Why is runtime O(n log n + k) optimal?
• The element uniqueness problem requires (n log n) time

in algebraic decision tree model of computation (Ben-Or ’83)
• Element uniqueness: Given n real numbers, are all of them

distinct?
• Solve element uniqueness using line segment

intersection:
– Take n numbers, convert into vertical line segments. There is an

intersection iff there are duplicate numbers.
– If we could solve line segment intersection in o(n log n) time, i.e.,

strictly faster than Θ(n log n), then element uniqueness could be
solved faster. Contradiction.

1/22/15 CMPS 3130/6130 Computational Geometry 6

Plane sweep
algorithm

• Cleanliness property:
– All intersections to the left of sweep line l have been

reported
• Sweep line status:

– Store segments that intersect the sweep line l, ordered along
the intersection with l .

• Events:
– Points in time when sweep line status changes

combinatorially (i.e., the order of segments intersecting l
changes)

→ Endpoints of segments (insert in beginning)
→ Intersection points (compute on the fly during plane sweep)

1/22/15 CMPS 3130/6130 Computational Geometry 7

General position

Assume that “nasty” special cases don’t happen:
– No line segment is vertical
– Two segments intersect in at most one point
– No three segments intersect in a common point

1/22/15 CMPS 3130/6130 Computational Geometry 8

Event Queue

• Need to keep events sorted:
– Lexicographic order (first by x-coordinate, and if two events

have same x-coordinate then by y-coordinate)
• Need to be able to remove next point, and insert new

points in O(log n) time
• Need to make sure not to process same event twice
 Use a priority queue (heap), and possibly extract

multiples
 Or, use balanced binary search tree

1/22/15 CMPS 3130/6130 Computational Geometry 9

Sweep Line Status
• Store segments that intersect the sweep line l, ordered along the

intersection with l .
• Need to insert, delete, and find adjacent neighbor in O(log n) time
• Use balanced binary search tree, storing the order in which

segments intersect l in leaves

b
c

de

c
b
e
d

1/22/15 CMPS 3130/6130 Computational Geometry 10

Event Handling
1. Left segment endpoint

– Add new segment to sweep line status
– Test adjacent segments on sweep line l for intersection with new

segment (see Lemma)
– Add new intersection points to event queue

a

b
c

de

c
b
d

c
b
e
d

1/22/15 CMPS 3130/6130 Computational Geometry 11

Event Handling
2. Intersection point

– Report new intersection point
– Two segments change order along l

→ Test new adjacent segments for new intersection points (to
insert into event queue)

a

b
c

de

c
e
b
d

c
b
e
d

Note: “new” intersection
might have been already
detected earlier.

1/22/15 CMPS 3130/6130 Computational Geometry 12

Event Handling
3. Right segment endpoint

– Delete segment from sweep line status
– Two segments become adjacent. Check for intersection points (to

insert in event queue)

a

b
c

de

e
c
b
d

e
c
d

1/22/15 CMPS 3130/6130 Computational Geometry 13

Intersection Lemma

• Lemma: Let s, s’ be two non-vertical segments whose
interiors intersect in a single point p. Assume there is no
third segment passing through p. Then there is an event
point to the left of p where s and s’ become adjacent (and
hence are tested for intersection).

• Proof: Consider placement of sweep line infinitesimally
left of p. s and s’ are adjacent along sweep line. Hence
there must have been a previous event point where s and
s’ become adjacent.

p
s

s’

1/22/15 CMPS 3130/6130 Computational Geometry 14

Runtime

• Sweep line status updates: O(log n)
• Event queue operations: O(log n), as the total

number of stored events is  2n + k, and each
operation takes time
O(log(2n+k)) = O(log n2) = O(log n)

• There are O(n+k) events. Hence the total runtime
is O((n+k) log n)

k = O(n2)

