
1/20/15 CMPS 3130/6130 Computational Geometry 1

CMPS 3130/6130 Computational Geometry
Spring 2015

Plane Sweep Algorithms I
Carola Wenk

1/20/15 CMPS 3130/6130 Computational Geometry 2

Closest Pair

• Problem: Given PR2, |P|=n, find the distance
between the closest pair in P

1/20/15 CMPS 3130/6130 Computational Geometry 3

Plane Sweep: An Algorithm
Design Technique

• Simulate sweeping a vertical line from left to right across the plane.
• Maintain cleanliness property: At any point in time, to the left of sweep

line everything is clean, i.e., properly processed.
• Sweep line status: Store information along sweep line
• Events: Discrete points in time when sweep line status needs to be

updated

1/20/15 CMPS 3130/6130 Computational Geometry 4

Plane Sweep: An Algorithm
Design Technique

• Simulate sweeping a vertical line from left to right across the plane.
• Maintain cleanliness property: At any point in time, to the left of sweep

line everything is clean, i.e., properly processed.
• Sweep line status: Store information along sweep line
• Events: Discrete points in time when sweep line status needs to be

updated

Algorithm Generic_Plane_Sweep:

Initialize sweep line status S at time x=-
Store initial events in event queue Q, a priority queue ordered by x-coordinate
while Q ≠ 

// extract next event e:
e = Q.extractMin();
// handle event:
Update sweep line status
Discover new upcoming events and insert them into Q

1/20/15 CMPS 3130/6130 Computational Geometry 5

Plane sweep for
Closest Pair

• Problem: Given PR2, |P|=n, find the distance of
the closest pair in P

• Sweep line status:
– Store current distance Δ of closest pair of points to the

left of sweep line
– Store points in Δ-strip left of sweep line
– Store pointer to leftmost point in strip

• Events: All points in P. No new events will be
added during the sweep.
→ Presort P by x-coordinate.

Cleanliness property

1/20/15 CMPS 3130/6130 Computational Geometry 6

Plane sweep for
Closest Pair, II

• Presort P by x-coordinate
• How to store points in Δ-strip?

– Store points in Δ-strip left of sweep line in a balanced binary search tree,
ordered by y-coordinate
→ Add point, delete point, and search in O(log n) time

• Event handling:
– New event: Sweep line advances to point pP
– Update sweep line status:

• Delete points outside Δ-strip from search tree by using previous leftmost point in
strip and x-order on P

• Compute candidate points that may have distance  Δ from p:
– Perform a search in the search tree to find points in Δ–strip whose y-

coordinates are at most Δ away from p.y.
→ Δ x 2Δ rectangle

– Because of the cleanliness property each pair of these points has distance ≥Δ.
→ A Δ x 2Δ rectangle can contain at most 6 such points.

• Check distance of these points to p, and possibly update Δ
– No new events necessary to discover

O(n log n)

O(n log n) total

O(n log n + 6n) total

O(6n) total

Total runtime: O(n log n)

Δ

Δ

Δ

1

2

3

1/20/15 CMPS 3130/6130 Computational Geometry 7

Balanced Binary Search Tree
-- a bit different

1

6 8 12 14

17

26 35 41 42

43

59 61

key[x] is the maximum key of any leaf in the left subtree of x.

1/20/15 CMPS 3130/6130 Computational Geometry 8

121

6 8 12 14

17

26 35 41 42

43

59 61

6 26 41 59

1 14 35 43

428

17
x

 x > x

Balanced Binary Search Tree
-- a bit different

key[x] is the maximum key of any leaf in the left subtree of x.

1/20/15 CMPS 3130/6130 Computational Geometry 9

12

8 12 14

17

26 35 41

26

14

1

6 42

43

59 61

6 41 59

1

12

8 12 14

17

26 35 41

26

14 35 43

428

17

RANGE-QUERY([7, 41])

x

 x > x

Balanced Binary Search Tree
-- a bit different

1/20/15 CMPS 3130/6130 Computational Geometry 10

Plane Sweep: An Algorithm
Design Technique

• Plane sweep algorithms (also called sweep
line algorithms) are a special kind of
incremental algorithms

• Their correctness follows inductively by
maintaining the cleanliness property

• Common runtimes in the plane are O(n log n):
– n events are processed
– Update of sweep line status takes O(log n)
– Update of event queue: O(log n) per event

