CMPS 3130/6130 Computational Geometry
Spring 2015

Linear Programming and

Halfplane Intersection
Carola Wenk

CMPS 3130/6130 Computational Geometry

Word Problem

A company produces tables and chairs. The profit for a chair 1s
$2, and for a table $4. Machine group A needs 4 hours to produce
a chair, and 6 hours to produce a table. Machine group B needs 2
hours to produce a chair, and 6 hours to produce a table. Per day
there are at most 120 working hours for group A and at most 72
hours for group B.

How can the company maximize profit?

Variables: | Constraints:
C, = # chairs produced on machine group A 4¢, +6t, <120

Cg = # chairs produced on machine group B
t, = # tables produced on machine group A 25 +6t5 < 72
tz = # tables produced on machine group B

Objective function (profit):
Maximize 2(C,+Cg)+4(t,+g)
CMPS 3130/6130 Computational Geometry 2

Linear Programming

Variables: x,,..., X4

Constraints:

h,: 8, X, t+...Fa X< b,
h,: 8y X;t. ..ty Xy < b,
h,: a, X, ... ta X< b,

 Each constraint h. is a half-space in R¢
o NI, h; is the feasible region of the

linear program

e Maximizing f:(X) corresponds to
finding a point X that 1s extreme Las:tle v &tou

1n direction C.

Objective function:
Maximize f:(X) = ¢, X;+...+Cy Xy

-
Linear program
d variables with

N constrain
9 constraints

in\

CMPS 3130/6130 Computational Geometry

Sub-Problem: Halfspace Intersection
(in R%: Halfplane Intersection)

Given: A set H={h,, h,, ..., h.} of halfplanes
h.: ax+hy<c
with constants a, b, c.; fori=1,....n.
Find: N2, h; , i.e., the feasible region of all points (X,y)eR?
satisfying all n constraints at the same time. This 1s a convex

polygonal region bounded by at most n edges.

> \ 7

: - . . . : Intersection
Intersection intersection intersection desenerated to
bounded unbounded empty & .
a point

CMPS 3130/6130 Computational Geometry 4

D&C Halfplane Intersection

Algorithm Intersect Halfplanes(H):
Input: A set H of n halfplanes in R?
Output: The convex polygonal region C= 1, cy h
if |H|=1 then
C=h, where H={h}
else
split H into two sets H, and H, of size n/2 each
C, = Intersect Halfplanes(H,)
C, = Intersect Halfplanes(H,)
C = Intersect Convex_Regions(C,, C,)
return C

* Use a plane-sweep to develop an O(n)-time algorithm for
Intersect Convex Regions

« T(n)=2T(n/2)tn = T(n)eO(n log n)

Incremental Linear Programming

e 2D linear program (LP)

e Assume the LP 1s bounded (otherwise add constraints)
\

* Assume there 1s one unique solution (if any); ¢ m Ik
take the lexicographically smallest solution

-

* Incremental approach: Add one halfplane after the other.
Hi:{h’ll""hi} C,;Zhlﬂ'"ﬂhi C:Cn:nhEHh’
Let v, = unique optimal vertex for feasible region C;, fori = 2.

Then(C; 2 C, 2 ... 2 C,, = C , and hence
if C; = @ for some i then C; = @ forallj =i .

Incremental Linear Programming

Lemma: Let 2<i<n.
(1) vai—l - hi thGIl Ul' — vi—l
(i1) If v;_, & h; then

Ci — @ s
or v; € [; = the line bounding h;

Handling case (11) involves solving a -
1-dimensional LP on [; :

» The feasible region 1s just an interval, .
that can be computed 1n linear time : A
[rightmost left-bounded halfplane, L g W
leftmost right-bounded halfplane] o' L) é(h L)

« = We can compute a new v;, or decide that the LP 1s
infeasible, in O(I) time

2D Bounded LP

Algorithm 2D Bounded LP(H,C):
Input: A two-dimensional LP (H , C)

Output: Report if (H , €) is infeasible. Otherwise report the lexicographically smallest
point that maximizes f 2.

Let h4, ..., h,, be the halfplanes of H
Let v, be the corner of C,, which exists because LP is bounded
fori=3 ton do
ifvi_l (S hi then Vi = Vi1
else
v; = point on [; that maximizes f subject to constraints in H;

if such a point does not exist then
Report that the LP is infeasible
break;

return v,
 Runtime: })I*, 0(i) = 0(n?)
Storage: O (n)

Randomized Incremental LP

Depending on the insertion order of the halfplanes the runtime
varies between O(n) and O(n?).
— Randomize the input order of the halfplanes.

Theorem: 2D Randomized Bounded LP runsin O(n) expected
time and O(n) deterministic space.

Lvi1 €hy
0, else
The total time spent to resolve case (11), over all h, ..., h,, 1s

Z 0()X,

Proof: Define a random variable X; = {

Randomized Incremental LP

We now need to bound the expected value
B(Xi=, 0(DX;) = Xis 0EX,)
and we know that £ (X;) = P(X;) = P(v;_1 & h;).
Apply backwards analysis to bound E'(X;):
— Fix H; = {h4, ..., h;} which determines C;.

— Analyze what happened in last step when h; was added.

— P(had to compute new optimal vertex when adding h;)
= P(optimal vertex changes when we remove a halfplane from ()

2 lines
defining v,

= E(X;) < -

— Total expected runtime is).}, O (i) % = 0(n)

