CMPS 3130/6130: Computational Geometry
Spring 2015

Convex Hulls
Carola Wenk

1/13/15 CMPS 3130/6130: Computational Geometry

Convex Hull Problem

Given a set of pins on a pinboard
and a rubber band around them.

How does the rubber band look
when 1t snaps tight?

The convex hull of a point set 1s
one of the simplest shape
approximations for a set of points.

1/13/15 CMPS 3130/6130: Computational Geometry

Convexity

A set C < R? is convex if for every two points P, C the line
segment P(1s fully contained in C.

convex non-convex

1/13/15 CMPS 3130/6130: Computational Geometry

Convex Hull

the smallest

— R%is

int set P

The convex hull CH(P) of a po

convex set C o P.

o> .
- -

O ©

@)

~~
P
N
an
@)
9p}
o)
—
o
=
—
S /|
15 F
- 4
= i
I)~

Computational Geometry

CMPS 3130/6130

1/13/15

Convex Hull

Observation: CH(P) is the unique convex polygon whose
vertices are points of P and which contains all points of P.
Goal: Compute CH(P).
What does that mean? How do we represent/store CH(P)?

= Represent the convex hull as the sequence of points on
the convex hull polygon (the boundary of the convex hull),
in counter-clockwise order. 5 3

0 1
1/13/15 CMPS 3130/6130: Computational Geometry

A First Try

Algorithm SLOW_CH(P):

Input: Point set P < R?
Output: A list L of vertices describing the CH(P) in counter-clockwise order

E:=0
for all (p,q)ePxP with p#Q
valid := true

for all reP, r#p and r+#q
if r lies to the right of directed line through p and g
valid := false
if valid then
E:=Eupq
Construct from E sorted list L of vertices of CH(P) in counter-clockwise order

« Runtime: O(n?) , where n = |P|
* How to test that a point lies to the right of a directed line?

1/13/15 CMPS 3130/6130: Computational Geometry

Orientation Test / Halfplane Test

r p y
- q¢
q s ¢
P . pe
* positive orientation * negative orientation * zero orientation
(counter-clockwise) (clockwise) « r lies on the line pg

e 1 lies to the left of pg T Ties to the right of pg

("

| | L p, py
* Orient(p,q,r) = sign detf1 q, q,[,where p=(p,.p,)

lr.r
. Xy)

» Can be computed 1n constant time

1/13/15 CMPS 3130/6130: Computational Geometry 7

Jarvis’ March (Gift Wrapping)

Algorithm Giftwrapping CH(P):

Input: Point set P < R?
Output: List q,, (,,... of vertices in counter-clockwise order around CH(P)
| g, = point in P with smallest y (if ties, with smallest X)
0, = point in P with smallest angle to horizontal line through g,
1=2
do {
i++
0; = point with smallest angle to line through g, , and g, ,
} while 0, %0,

* Runtime: O(hn) , where n = |P| and h = #points on CH(P)
 Qutput-sensitive algorithm

1/13/15 CMPS 3130/6130: Computational Geometry 8

Incremental Insertion

Algorithm Incremental CH(P):

Input: Point set P < R?
Output: C=CH(P), described as a list of vertices in counter-clockwise order
O(n'log n) | Sort points in P lexicographically (by x-coordinate, break ties by y-coordinate)

O(1) Remove first three points from P and insert them into C in counter-clockwise
order around the triangle described by them.

n-3 times | forall peP
O(1) Compute the two tangents to p and C
O(1) Remove enclosed non-hull points from C, and insert p

 Runtime: O(iZ:i) = O(n?) , where n = |P|
 Really?

1/13/15 CMPS 3130/6130: Computational Geometry 9

Tangent computation

upper_tangent(C,p,):

Vi = Piy

while succ(V,) lies above line through p; and v,
Vv, = succ(V,)

return V;

— Amortization: Every vertex that is checked during tangent
computation 1s afterwards deleted from the current convex hull C

1/13/15 CMPS 3130/6130: Computational Geometry 10

Incremental Insertion

Algorithm Incremental CH(P):

Input: Point set P < R?
Output: C=CH(P), described as a list of vertices in counter-clockwise order
O(n'log n) | Sort points in P lexicographically (by x-coordinate, break ties by y-coordinate)

O(1) Remove first three points from P and insert them into C in counter-clockwise
order around the triangle described by them.

n-3 times | forall peP
O(1) amort. Compute the two tangents to p and C
O(1) amort, Remove enclosed non-hull points from C, and insert p

* Runtime: O(n log n + n) = O(n log n), where n = |P)|

1/13/15 CMPS 3130/6130: Computational Geometry 11

Convex Hull: Divide & Conquer

Preprocessing: sort the points by x-
coordinate

Divide the set of points into two
sets A and

A contains the left | n/2] points,
contains the right [n/2] points

Recursively compute the convex
hull of A A

Recursively compute the convex
hull of

Merge the two convex hulls

1/13/15 CMPS 3130/6130: Computational Geometry 12

Merging

Find upper and lower tangent

With those tangents the convex hull
of AUB can be computed from the
convex hulls of A and the convex hull
of B 1n O(n) linear time

1/13/15 CMPS 3130/6130: Computational Geometry 13

Finding the lower tangent

3

a = rightmost point of A
b = leftmost point of B

while T=ab not lower tangent to both
convex hulls of A and B do{

while T not lower tangent to
convex hull of A do{
a=a-1

while T not lower tangent to
convex hull of B do{
b=b+1
;

J check with
orientation test .
1/13/15 CMPS 3130/6130: Computational Geor®.ry 14

left turn

right turn

Convex Hull: Runtime

Preprocessing: sort the points by x- O(n lo ﬂ) ust once
coordinate 5 .

Divide the set of points into two

sets A and B: O(l)

A contains the left | n/2] points,
contains the right [n/2] points

Recursively compute the convex T(n/ 2)
hull of A

Recursively compute the convex T(n/2)
hull of

Merge the two convex hulls O(n)

1/13/15 CMPS 3130/6130: Computational Geometry 15

Convex Hull: Runtime

Runtime Recurrence:

T(n) =2 T(n/2) + cn

Solves to T(n) = ®(n log n)

1/13/15 CMPS 3130/6130: Computational Geometry

16

Recurrence
(Just like merge sort recurrence)

1. Divide: Divide set of points in half.

2. Conquer: Recursively compute convex
hulls of 2 halves.

3. Combine: Linear-time merge.
T(n)=2T(n/2) +O(N)~——_

subproblemssubproblem size ~ WOrk dividing
and combining

1/13/15 CMPS 3130/6130: Computational Geometry 17

Recurrence (cont’d)

Lo [e) ifn=1;
(M= {2T(n/2)+®(n) ifn>1.

* How do we solve T(Nn)? I.e., how do we
find out if it is O(n) or O(n?) or ...?

1/13/15 CMPS 3130/6130: Computational Geometry

18

Recursion tree

Solve T(n)=2T(n/2) + dn, where d > 0 is constant.

1/13/15 CMPS 3130/6130: Computational Geometry 19

Recursion tree

Solve T(n)=2T(n/2) + dn, where d > 0 is constant.
T(n)

1/13/15 CMPS 3130/6130: Computational Geometry 20

Recursion tree

Solve T(n)=2T(n/2) + dn, where d > 0 is constant.

d
" n ™~
T(n/2) T(n/2)

1/13/15 CMPS 3130/6130: Computational Geometry 21

Recursion tree

Solve T(n)=2T(n/2) + dn, where d > 0 is constant.

dn

/ \
dn/2 dn/2

VRN VRN
T(n/4) T(mM4) Tm4) T(n/4)

1/13/15 CMPS 3130/6130: Computational Geometry 22

Recursion tree

Solve T(n)=2T(n/2) + dn, where d > 0 is constant.

dn

/ \
dn/2 dn/2

/ AN VAN
dn/4 dn/4 dn/4 dn/4
/

®(/1)

1/13/15 CMPS 3130/6130: Computational Geometry 23

Recursion tree

Solve T(n)=2T(n/2) + dn, where d > 0 is constant.

dn

/ \
dn/2 dn/2

B /N /N
h=logn gn/4 dn/4 dn/4 dn/4
/

®(/1)

1/13/15 CMPS 3130/6130: Computational Geometry 24

Recursion tree

Solve T(n)=2T(n/2) + dn, where d > 0 is constant.
dn dn

/
dn/2 dn/2
VAN /.

h=logn gn/a dn/4 dn/4 dn/4
/

®(/1)

1/13/15 CMPS 3130/6130: Computational Geometry 25

Recursion tree

Solve T(n)=2T(n/2) + dn, where d > 0 is constant.
dn dn

/
dn/2 dn/2 s dn
RN RN

h=logn gn/a dn/4 dn/4 dn/4
/

®(/1)

1/13/15 CMPS 3130/6130: Computational Geometry 26

Recursion tree

Solve T(n)=2T(n/2) + dn, where d > 0 is constant.
dn dn

/
dn/2 dn/2 - dn
RN RN

h=logn g4 dn/4 dn/4 dn/4 -~ dn
/

®(/1)

1/13/15 CMPS 3130/6130: Computational Geometry 27

Recursion tree

Solve T(n)=2T(n/2) + dn, where d > 0 is constant.
dn dn

/
dn/2 dn/2 s dn
RN RN

h=logn g4 dn/4 dn/4 dn/4 -~ dn
/

O(1) | #leaves —n | e o(n)

1/13/15 CMPS 3130/6130: Computational Geometry 28

Recursion tree

Solve T(n)=2T(n/2) + dn, where d > 0 is constant.
dn dn

/
dn/2 dn/2 - dn
RN RN

h=logn g4 dn/4 dn/4 dn/4 -~ dn
/

/ :
O(1) - { #leaves = N 1 ------------------------------ O(n)
Total ®(n log n)

1/13/15 CMPS 3130/6130: Computational Geometry 29

1/13/15

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems.

a subproblems, each of size n/b

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.
Runtime is f(n)

CMPS 3130/6130: Computational Geometry

30

Master theorem

T(n)=aT(n/b) +f(n) ,
where a > 1, b > 1, and f i1s asymptotically positive.

CASE 1: f(n) = O(nlogba—¢)
= T(n) = O(n'ogh?)

Cask 2: f(n) = O(nlogb2 Jogkn)
= T(n) = O(n'ogva Joghk*tIn)

Cast 3: f(n) = Q(n'egba* &) and af(n/b) < cf(n)
= T(n) = O(f(n)).

Convex hull: a=2,b=2 = nloga=n
— CASE 2 (k=0) = T(n)=0(nlogn).

1/13/15 CMPS 3130/6130: Computational Geometry 31

Graham’s Scan

Another incremental algorithm
— Compute solution by incrementally adding points

— Add points in which order?
» Sorted by x-coordinate
» But convex hulls are cyclically ordered
— Split convex hull into upper and lower part

upper convex hull UCH(P)

lower convex hull LCH(P)

1/13/15 CMPS 3130/6130: Computational Geometry

32

Graham’s LCH

Algorithm Grahams LCH(P):

Input: Point set P — R?
Output: A list L of vertices describing LCH(P) in counter-clockwise order

O(n logn) | Sort P in increasing order by x-coordinate — P = {py,...,p, |

L = {p,,p,}

(| for I=3 ton

while |L|>=2 and orientation(L.second(), L.first(), p,,) <=0
delete first element from L

Append p; to the front of L

O(n))

« Each element 1s appended only once, and hence only deleted at
most once = the for-loop takes O(n) time

* O(n log n) time total
1/13/15 CMPS 3130/6130: Computational Geometry 33

_ower Bound

« Comparison-based sorting of n elements takes
Q(n log n) time.

* How can we use this lower bound to show a lower
bound for the computation of the convex hull of n
points in R??

1/13/15 CMPS 3130/6130: Computational Geometry 34

Decision-tree model

< >
| -
|) !26’16 . :lg;
< > = P, >

A decision tree models the execution of any

comparison sorting algorithm:
* One tree per 1nput size N.

s

that could be executed for any input of size n.

s

* The tree contains all comparisons along all possible

» The tree contains all possible comparisons (= if-branches)

instruction traces (= control flows) for all inputs of size n.
 For one mput, only one path to a leaf 1s executed.

* Running time = length of the path taken.
* Worst-case running time = height of tree.

1/13/15 CMPS 3130/6130: C8mputational Geometry

Decision-tree for insertion sort
Sort (a,, a,, a;)

a,|a, a;| insert a,
: 1]
insert a, < a;dy) >

a, a,|a;| 1nsert a
a, a,|a, A
11 = a, ala, =
: : a, a,|as
d,d,d; L) d,dd; T
> >
d,d;d,| |dzadd, d,d;d, d;ad,d,

Each internal node is labeled a;:a; for I,] € {1,2,...,n}.
* The left subtree shows subsequent comparisons if &; < &;.
* The right subtree shows subsequent comparisons it a; > a;.

1/13/15 CMPS 3130/6130: C8mputational Geometry

Decision-tree for insertion sort
Sort (a,, a,, a;) = <9,4,6>

a,|a, a;| insert a,
: 1]
insert a, < a;dy) >

a, a,|a;| 1nsert a
a, a,|a, A
11 = a, ala, =
: : a, a,|as
d,d,d; L) d,dd; T
> >
d,d;d,| |dzadd, d,d;d, d;ad,d,

Each internal node is labeled a;:a; for I,] € {1,2,...,n}.
* The left subtree shows subsequent comparisons if &; < &;.
* The right subtree shows subsequent comparisons it a; > a;.

1/13/15 CMPS 3130/6130: C8mputational Geometry

Decision-tree for insertion sort
Sort (a,, a,, a;) = <9,4,6>

a,|a, a;| insert a,
1]

insert a,

ds| insert a

d, &,

a; &l
il]

d, a|a3

a,a,a,| |a,a,a, a,a,a,| |a;2,a,

Each internal node is labeled a;:a; for I,] € {1,2,...,n}.
* The left subtree shows subsequent comparisons if &; < &;.
* The right subtree shows subsequent comparisons it a; > a;.

1/13/15 CMPS 3130/6130: C8siputational Geometry

Decision-tree for insertion sort
Sort (a,, a,, a;) = <9,4,6>

a,|a, a;| insert a,
: 1]
insert a, < ap;:dy) >

TN Y insert a
i) = a, ala, =
a,a,a, i 'J |a,a,a, 20 a;
> >
a,2,a,| |a;a,a, 8,2,8,| |a;a,a,

Each internal node is labeled a;:a; for I,] € {1,2,...,n}.
* The left subtree shows subsequent comparisons if &; < &;.
* The right subtree shows subsequent comparisons it a; > a;.

1/13/15 CMPS 3130/6130: C8mputational Geometry

Decision-tree for insertion sort
Sort (a,, a,, a;) = <9,4,6>

insert a,

a, 4, d,

i)

d,;a,a,

d;a,a,

d, 4, &5 insert a

a, 4, 3

1
>

d;ad,a,

Each internal node is labeled a;:a; for I,] € {1,2,...,n}.
* The left subtree shows subsequent comparisons if &; < &;.
* The right subtree shows subsequent comparisons it a; > a;.

1/13/15 CMPS 3130/6130: Cdmputational Geometry

J

Decision-tree for insertion sort
Sort (a,, a,, a;) = <9,4,6>

insert a,

a, 4, d,

i)

; insert a,

d, 4, &5 insert a

d,;a,a,

d;a,a,

. . 4<6<9
Each internal node is labeled a8 forl,] € {1,2,...,n}.

* The left subtree shows subsequent comparisons if &; < &;.
* The right subtree shows subsequent comparisons it a; > a;.

1/13/15 CMPS 3130/6130: Cdthputational Geometry

Decision-tree for insertion sort
Sort (a,, a,, a;) = <9,4,6>

insert a,

a, 4, d,

i)

; insert a,

d, 4, &5 insert a

d,;a,a,

d;a,a,

4<6 <9

Each leaf contains a permutation (mt(1), (2),..., m(n)) to indicate

that the ordering a, ;) <a,, < ...

< a,, has been established.

1/13/15 CMPS 3130/6130: Cd@putational Geometry

L_ower bound for

comparison sorting

Theorem. Any decision tree that can sort 1
elements must have height Q(nlogn).

Proof. The tree must contain > n! leaves, since
there are n! possible permutations. A height-h
binary tree has < 2" leaves. Thus, n! < 2",

.. h >1log(n!) (log 1s mono. increasing)
> log ((n/2)"2)
=n/2 log n/2

= h € Q(nlogn).

1/13/15 CMPS 3130/6130: Cd@putational Geometry

_ower Bound

« Comparison-based sorting of n elements takes
Q(n log n) time.

* How can we use this lower bound to show a lower
bound for the computation of the convex hull of n
points in R??

* Devise a sorting algorithm which uses the convex
hull and otherwise only linear-time operations

= Since this 1s a comparison-based sorting algorithm, the
lower bound €2(n log n) applies

—> Since all other operations need linear time, the convex
hull algorithm has to take €2(n log n) time

1/13/15 CMPS 3130/6130: Computational Geometry 44

CH Sort

Algorithm CH_ Sort(S):

Input: Set of numbers S — R

Output: A list L of of numbers in S sorted in
increasing order

P=
for each seS insert (5,5%) into P
L’ = CH(P)
Find point p’ €P with minimum x-coordinate
for each p=(p,,p,)eL’, starting with p’,
add p, into L
return L

1/13/15 CMPS 3130/6130: Computational Geometry 45

Convex Hull Summary

 Brute force algorithm: O(n%)
 Jarvis’ march (gift wrapping): O(nh)

e Incremental insertion: O(n log n)
e Divide-and-conquer: O(n log n)
e Graham’s scan: O(n log n)
e Lower bound: Q(n log n)

1/13/15 CMPS 3130/6130: Computational Geometry 46

