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Convex Hull Problem

 Given a set of pins on a pinboard

and a rubber band around them.

How does the rubber band look   
when it snaps tight?

 The convex hull of a point set is 
one of the simplest shape 
approximations for a set of points.
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Convexity

A set C  R2 is convex if for every two points p,qC the line 
segment pq is fully contained in C.

convex non-convex
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Convex Hull

 The convex hull CH(P) of a point set P  R2 is the smallest 
convex set C  P. In other words CH(P) =  C .

C  P
C convex

P
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Convex Hull
 Observation: CH(P) is the unique convex polygon whose 
vertices are points of P and which contains all points of P.

0

2

1

3
4

6
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 Goal: Compute CH(P). 
What does that mean? How do we represent/store CH(P)?

 Represent the convex hull as the sequence of points on 
the convex hull polygon (the boundary of the convex hull), 
in counter-clockwise order.
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A First Try
Algorithm SLOW_CH(P):
/* CH(P) = Intersection of all half-planes that are defined by the directed line through 

ordered pairs of points in P and that have all remaining points of P on their left */  
Input: Point set P  R2

Output: A list L of vertices describing the CH(P) in counter-clockwise order
E:=
for all (p,q)PP with p≠q   // ordered pair

valid := true
for all rP, r≠p and r≠q

if r lies to the right of directed line through p and q // takes constant time
valid := false

if valid then
E:=Epq // directed edge

Construct from E sorted list L of vertices of CH(P) in counter-clockwise order

• Runtime: O(n3) , where n = |P|
• How to test that a point lies to the right of a directed line?
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Orientation Test / Halfplane Test

p

q

r

r

q

p

• positive orientation
(counter-clockwise)

• r lies to the left of pq

• negative orientation
(clockwise)

• r lies to the right of pq

r
q

p
• zero orientation
• r lies on the line pq

• Orient(p,q,r) = sign det  

• Can be computed in constant time

1 px py
1 qx qy
1 rx ry

,where p = (px,py)
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Jarvis’ March (Gift Wrapping)
Algorithm Giftwrapping_CH(P):
// Compute CH(P) by incrementally inserting points from left to right 
Input: Point set P  R2

Output: List q1, q2,… of vertices in counter-clockwise order around CH(P)
q1 = point in P with smallest y (if ties, with smallest x)
q2 = point in P with smallest angle to horizontal line through q1
i = 2
do {

i++
qi = point with smallest angle to line through qi-2 and qi-1

} while qi ≠ q1

q1

q2

q3

• Runtime: O(hn) , where n = |P| and h = #points on CH(P)
• Output-sensitive algorithm
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Incremental Insertion
Algorithm Incremental_CH(P):
// Compute CH(P) by incrementally inserting points from left to right 
Input: Point set P  R2

Output: C=CH(P), described as a list of vertices in counter-clockwise order
Sort points in P lexicographically (by x-coordinate, break ties by y-coordinate)
Remove first three points from P and insert them into C in counter-clockwise 

order around the triangle described by them.
for all pP // Incrementally add p to hull

Compute the two tangents to p and C
Remove enclosed non-hull points from C, and insert p

• Runtime: O(i) = O(n2) , where n = |P|

O(n log n)
O(1)

n-3 times
O(i)
O(i)

i=3

n

• Really?
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Tangent computation

pi

upper_tangent(C,pi):
// Compute upper tangent to pi and C. Return tangent vertex vt
vt = pi-1
while succ(vt) lies above line through pi and vt

vt = succ(vt)
return vt

vt

vb

pi-1

succ(pi-1)

pred(pi-1)

 Amortization: Every vertex that is checked during tangent 
computation is afterwards deleted from the current convex hull C
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Incremental Insertion
Algorithm Incremental_CH(P):
// Compute CH(P) by incrementally inserting points from left to right 
Input: Point set P  R2

Output: C=CH(P), described as a list of vertices in counter-clockwise order
Sort points in P lexicographically (by x-coordinate, break ties by y-coordinate)
Remove first three points from P and insert them into C in counter-clockwise 

order around the triangle described by them.
for all pP // Incrementally add p to hull

Compute the two tangents to p and C
Remove enclosed non-hull points from C, and insert p

• Runtime: O(n log n + n) = O(n log n), where n = |P|

O(n log n)
O(1)

n-3 times
O(1) amort.

O(1) amort.
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Convex Hull: Divide & Conquer
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two 
sets A and B:

 A contains the left n/2 points, 

 B contains the right n/2 points 

Recursively compute the convex 
hull of A

Recursively compute the convex 
hull of B

 Merge the two convex hulls

A B
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Merging 
 Find upper and lower tangent

 With those tangents the convex hull 
of AB can be computed from the 
convex hulls of A and the convex hull 
of B in O(n) linear time

A B
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check with 
orientation test

right turn
left turn

Finding the lower tangent 
a = rightmost point of A
b = leftmost point of B
while T=ab not lower tangent to both   

convex hulls of A and B do{
while T not lower tangent to 
convex hull of A do{

a=a-1
}
while T not lower tangent to 
convex hull of B do{
b=b+1

}
}

A B
0

a=2

1

5

3

4

0

1

2

3

4=b

5

6
7
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Convex Hull: Runtime
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two 
sets A and B:

 A contains the left n/2 points, 

 B contains the right n/2 points 

Recursively compute the convex 
hull of A

Recursively compute the convex 
hull of B

 Merge the two convex hulls

O(n log n)  just once

O(1)

T(n/2)

T(n/2)

O(n)
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Convex Hull: Runtime
 Runtime Recurrence:

T(n) = 2 T(n/2) + cn

 Solves to T(n) = (n log n)
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Recurrence 
(Just like merge sort recurrence)

1. Divide: Divide set of points in half.
2. Conquer: Recursively compute convex 

hulls of 2 halves.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
# subproblems subproblem size work dividing 

and combining
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Recurrence (cont’d)

T(n) =
(1) if n = 1;
2T(n/2) + (n) if n > 1.

• How do we solve T(n)? I.e., how do we 
find out if it is O(n) or O(n2) or …?
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n)
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

T(n/2) T(n/2)

dn
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

T(n/4) T(n/4) T(n/4) T(n/4)

dn/2 dn/2
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

h = log n
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

h = log n

dn
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

h = log n

dn

dn
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

h = log n

dn

dn

dn

…
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

h = log n

dn

dn

dn

#leaves = n (n)

…
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Recursion tree
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

dn

dn/4 dn/4 dn/4 dn/4

dn/2 dn/2

(1)

h = log n

dn

dn

dn

#leaves = n (n)
Total (n log n)

…
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The divide-and-conquer 
design paradigm

1. Divide the problem (instance) into 
subproblems.

a subproblems, each of size n/b
2. Conquer the subproblems by 

solving them recursively.
3. Combine subproblem solutions.

Runtime is f(n)
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Master theorem
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – )
 T(n) = (nlogba) .

CASE 2: f (n) = (nlogba logkn)
 T(n) = (nlogba logk+1n) .

CASE 3: f (n) = (nlogba + ) and a f (n/b)  c f (n) 
 T(n) = ( f (n)) .

, 
where a  1, b > 1, and f is asymptotically positive.

Convex hull: a = 2, b = 2  nlogba = n
 CASE 2 (k = 0)   T(n) = (n log n) . 
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Graham’s Scan

Another incremental algorithm
– Compute solution by incrementally adding points 
– Add points in which order?

• Sorted by x-coordinate
• But convex hulls are cyclically ordered
 Split convex hull into upper and lower part

upper convex hull UCH(P)

lower convex hull LCH(P)
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Graham’s LCH
Algorithm Grahams_LCH(P):
// Incrementally compute the lower convex hull of P  
Input: Point set P  R2

Output: A list L of vertices describing LCH(P) in counter-clockwise order

Sort P in increasing order by x-coordinate  P = {p1,…,pn}
L = {p2,p1}
for i=3 to n 

while |L|>=2 and orientation(L.second(), L.first(), pi,) <= 0 // no left turn
delete first element from L

Append pi to the front of L

• Each element is appended only once, and hence only deleted at 
most once   the for-loop takes O(n) time

• O(n log n) time total

O(n log n)

O(n)
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Lower Bound
• Comparison-based sorting of n elements takes

(n log n) time. 
• How can we use this lower bound to show a lower 

bound for the computation of the convex hull of n
points in R2?
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Decision-tree model
A decision tree models the execution of any 

comparison sorting algorithm:
• One tree per input size n. 
• The tree contains all possible comparisons (= if-branches)  

that could be executed for any input of size n.
• The tree contains all comparisons along all possible 

instruction traces (= control flows) for all inputs of size n.
• For one input, only one path to a leaf is executed.
• Running time = length of the path taken.
• Worst-case running time = height of tree.

1/13/15 CMPS 3130/6130: Computational Geometry
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Decision-tree for insertion sort 

a1:a2

a2:a3

a1a2a3 a1:a3

a1a3a2 a3a1a2

a1:a3

a2a1a3 a2:a3

a2a3a1 a3a2a1

Each internal node is labeled ai:aj for i, j {1, 2,…, n}.
• The left subtree shows subsequent comparisons if ai  aj.

• The right subtree shows subsequent comparisons if ai  aj.

Sort a1, a2, a3





















a1 a2 a3

a1 a2 a3
a2 a1 a3

i j

i j
i j

a2 a1 a3

i j

a1 a2 a3

i j

insert a3
insert a3

insert a2

1/13/15 CMPS 3130/6130: Computational Geometry
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Decision-tree for insertion sort 

a1:a2

a2:a3

a1a2a3 a1:a3

a1a3a2 a3a1a2

a1:a3

a2a1a3 a2:a3

a2a3a1 a3a2a1

Each internal node is labeled ai:aj for i, j {1, 2,…, n}.
• The left subtree shows subsequent comparisons if ai  aj.

• The right subtree shows subsequent comparisons if ai  aj.

Sort a1, a2, a3





















a1 a2 a3

a1 a2 a3
a2 a1 a3

i j

i j
i j

a2 a1 a3

i j

a1 a2 a3

i j

insert a3
insert a3

insert a2
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Decision-tree for insertion sort 

a1:a2

a2:a3

a1a2a3 a1:a3

a1a3a2 a3a1a2

a1:a3

a2a1a3 a2:a3

a2a3a1 a3a2a1

Each internal node is labeled ai:aj for i, j {1, 2,…, n}.
• The left subtree shows subsequent comparisons if ai  aj.

• The right subtree shows subsequent comparisons if ai  aj.

Sort a1, a2, a3



















a1 a2 a3

a1 a2 a3
a2 a1 a3

i j

i j
i j

a2 a1 a3

i j

a1 a2 a3

i j

insert a3
insert a3

insert a2

9  4
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Decision-tree for insertion sort 

a1:a2

a2:a3

a1a2a3 a1:a3

a1a3a2 a3a1a2

a1:a3

a2a1a3 a2:a3

a2a3a1 a3a2a1

Each internal node is labeled ai:aj for i, j {1, 2,…, n}.
• The left subtree shows subsequent comparisons if ai  aj.

• The right subtree shows subsequent comparisons if ai  aj.

Sort a1, a2, a3















 

a1 a2 a3

a1 a2 a3
a2 a1 a3

i j

i j
i j

a2 a1 a3

i j

a1 a2 a3

i j

insert a3
insert a3

insert a2

9  6
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Decision-tree for insertion sort 

a1:a2

a2:a3

a1a2a3 a1:a3

a1a3a2 a3a1a2

a1:a3

a2a1a3 a2:a3

a2a3a1 a3a2a1

Each internal node is labeled ai:aj for i, j {1, 2,…, n}.
• The left subtree shows subsequent comparisons if ai  aj.

• The right subtree shows subsequent comparisons if ai  aj.

Sort a1, a2, a3



















a1 a2 a3

a1 a2 a3
a2 a1 a3

i j

i j
i j

a2 a1 a3

i j

a1 a2 a3

i j

insert a3
insert a3

insert a2

4  6

1/13/15 CMPS 3130/6130: Computational Geometry



41

Decision-tree for insertion sort 

a1:a2

a2:a3

a1a2a3 a1:a3

a1a3a2 a3a1a2

a1:a3

a2a1a3 a2:a3

a2a3a1 a3a2a1

Each internal node is labeled ai:aj for i, j {1, 2,…, n}.
• The left subtree shows subsequent comparisons if ai  aj.

• The right subtree shows subsequent comparisons if ai  aj.

Sort a1, a2, a3





















a1 a2 a3

a1 a2 a3
a2 a1 a3

i j

i j
i j

a2 a1 a3

i j

a1 a2 a3

i j

insert a3
insert a3

insert a2

46  9
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Decision-tree for insertion sort 

a1:a2

a2:a3

a1a2a3 a1:a3

a1a3a2 a3a1a2

a1:a3

a2a1a3 a2:a3

a2a3a1 a3a2a1

Sort a1, a2, a3





















a1 a2 a3

a1 a2 a3
a2 a1 a3

i j

i j
i j

a2 a1 a3

i j

a1 a2 a3

i j

insert a3
insert a3

insert a2

46  9

Each leaf contains a permutation , ,…, (n) to indicate 
that the ordering a(1)  a(2)   a(n) has been established.
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Lower bound for 
comparison sorting

Theorem. Any decision tree that can sort n 
elements must have height (n log n) .
Proof. The tree must contain  n! leaves, since 
there are n! possible permutations.  A height-h
binary tree has  2h leaves.  Thus, n!  2h .
 h  log(n!) (log is mono. increasing)

 log ((n/2)n/2)
= n/2 log n/2

 h  (n log n) .
1/13/15 CMPS 3130/6130: Computational Geometry
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Lower Bound
• Comparison-based sorting of n elements takes

(n log n) time. 
• How can we use this lower bound to show a lower 

bound for the computation of the convex hull of n
points in R2?

• Devise a sorting algorithm which uses the convex 
hull and otherwise only linear-time operations
 Since this is a comparison-based sorting algorithm, the 

lower bound (n log n) applies
 Since all other operations need linear time, the convex 

hull algorithm has to take (n log n) time
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CH_Sort
Algorithm CH_Sort(S):
/* Sorts a set of numbers using a convex hull

algorithm. 
Converts numbers to points, runs CH, 
converts back to sorted sequence. */

Input: Set of numbers S  R
Output: A list L of of numbers in S sorted in  

increasing order
P=
for each sS insert (s,s2) into P
L’ = CH(P) // compute convex hull
Find point p’P with minimum x-coordinate
for each p=(px,py)L’, starting with p’,

add px into L
return L

s2

s
-2-4 1 4 5
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Convex Hull Summary
• Brute force algorithm: O(n3)
• Jarvis’ march (gift wrapping): O(nh)
• Incremental insertion: O(n log n)
• Divide-and-conquer: O(n log n)
• Graham’s scan: O(n log n)
• Lower bound: (n log n)


