#### CMPS 3130/6130 Computational Geometry Spring 2015



# Delaunay Triangulations II

Carola Wenk

#### Based on:



Computational Geometry: Algorithms and Applications

# **Applications of DT**

- Terrain modeling:
  - Model a scanned terrain surface by interpolating the height using a piecewise linear function over R<sup>2</sup>.



Angle-optimal triangulations give better approximations
 / interpolations since they avoid skinny triangles





## **Applications of DT**

- All nearest neighbors: Find for each  $p \in P$  its nearest neighbor  $q \in P$ ;  $q \neq p$ .
  - **Empty circle property:**  $p,q \in P$  are connected by an edge in DT(P)  $\Leftrightarrow$  there exists an empty circle passing through p and p. **Proof:** " $\Rightarrow$ ": For the Delaunay edge pq there must be a Voronoi edge. Center a circle through p and q at any point on the Voronoi edge, this circle must be empty.

    " $\Leftarrow$ ": If there is an empty circle through p and q, then its center q has to lie on the Voronoi edge because it is equidistant to p and q.

has to lie on the Voronoi edge because it is equidistant to p and q and there is no site closer to c.





- **Algorithm:** Find all nearest neighbors in O(n) time: Check for each  $p \in P$  all points connected to p with a Delaunay edge.
- Minimum spanning tree: The edges of every Euclidean minimum spanning tree of P are a subset of the edges of DT(P).

# Randomized Incremental Construction of DT(P)

- Start with a large triangle containing *P*.
- Insert points of *P* incrementally:
  - Find the containing triangle
  - Add new edges



Flip all illegal edges until every edge is legal.



# Randomized Incremental Construction of DT(P)



- An edge can become illegal only if one of its incident triangles changes.
- Check only edges of new triangles.
- Every new edge created is incident to  $p_r$ .
- Every old edge is legal (if  $p_r$  is on on one of the incident triangles, the edge would have been flipped if it were illegal).
- Every new edge is legal (since it has been created from flipping a legal edge).

### Pseudo Code

```
Algorithm DELAUNAYTRIANGULATION(P)
Input. A set P of n+1 points in the plane.
Output. A Delaunay triangulation of P.
1. Let p_0 be the lexicographically highest point of P, that is, the rightmost
      among the points with largest y-coordinate.
2. Let p_{-1} and p_{-2} be two points in \mathbb{R}^2 sufficiently far away and such that P
     is contained in the triangle p_0p_{-1}p_{-2}.
     Initialize T as the triangulation consisting of the single triangle p_0p_{-1}p_{-2}.
     Compute a random permutation p_1, p_2, \dots, p_n of P \setminus \{p_0\}.
     for r \leftarrow 1 to n
5.
          do (* Insert p_r into \mathcal{T}: *)
6.
              Find a triangle p_i p_i p_k \in \mathcal{T} containing p_r.
7.
8.
              if p_r lies in the interior of the triangle p_i p_i p_k
9.
                then Add edges from p_r to the three vertices of p_i p_j p_k, thereby
                       splitting p_i p_j p_k into three triangles.
10.
                       LEGALIZEEDGE(p_r, \overline{p_i p_i}, \mathfrak{T})
11.
                       LEGALIZEEDGE(p_r, \overline{p_i p_k}, T)
12.
                       LEGALIZEEDGE(p_r, \overline{p_k p_i}, \mathcal{T})
                else (* p_r lies on an edge of p_i p_i p_k, say the edge \overline{p_i p_i} *)
13.
14.
                       Add edges from p_r to p_k and to the third vertex p_l of the
                       other triangle that is incident to \overline{p_i p_i}, thereby splitting the
                       two triangles incident to \overline{p_i p_i} into four triangles.
```

LEGALIZEEDGE $(p_r, \overline{p_i p_l}, T)$ 

LEGALIZEEDGE( $p_r, \overline{p_l p_i}, \mathcal{T}$ )

LEGALIZE EDGE  $(p_r, \overline{p_i p_k}, T)$ 

LEGALIZEEDGE( $p_r, \overline{p_k p_i}, \mathfrak{I}$ ) 19. Discard  $p_{-1}$  and  $p_{-2}$  with all their incident edges from  $\mathcal{T}$ . LEGALIZEEDGE( $p_r, \overline{p_i p_i}, \mathcal{T}$ ) 1. (\* The point being inserted is  $p_r$ , and  $\overline{p_i p_i}$  is the edge of  $\mathcal{T}$  that may need to be flipped. \*) if  $\overline{p_i p_j}$  is illegal then Let  $p_i p_j p_k$  be the triangle adjacent to  $p_r p_i p_j$  along  $\overline{p_i p_j}$ . (\* Flip  $\overline{p_i p_i}$ : \*) Replace  $\overline{p_i p_i}$  with  $\overline{p_r p_k}$ . 5. LEGALIZEEDGE( $p_r, \overline{p_i p_k}, T$ ) LEGALIZEEDGE( $p_r, \overline{p_k p_i}, \mathcal{T}$ )





15.

16.

17.

18.

20. return T

## History

The algorithm stores the history of the constructed triangles. This allows to easily locate the triangle containing a new point by following pointers.

• Division of a triangle:



Store pointers from the old triangle to the three new triangles.

• Flip:



Store pointers from both old triangles to both new triangles.

**Theorem:** Let  $P = \{p_1, ..., p_n\}$  with  $p_i = (a_i, b_i, 0)$ . Let  $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$  be the vertical projection of each point  $p_i$  onto the paraboloid  $z = x^2 + y^2$ . Then DT(P) is the orthogonal projection onto the plane z = 0 of the lower convex hull of  $P^* = \{p_1^*, ..., p_n^*\}$ .





**Theorem:** Let  $P = \{p_1, ..., p_n\}$  with  $p_i = (a_i, b_i, 0)$ . Let  $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$  be the vertical projection of each point  $p_i$  onto the paraboloid  $z = x^2 + y^2$ . Then DT(P) is the orthogonal projection onto the plane z = 0 of the lower convex hull of

 $P^* = \{p^*_1, \dots, p^*_n\}$ .





**Theorem:** Let  $P = \{p_1, ..., p_n\}$  with  $p_i = (a_i, b_i, 0)$ . Let  $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$  be the vertical projection of each point  $p_i$  onto the paraboloid  $z = x^2 + y^2$ . Then DT(P) is the orthogonal projection onto the plane z = 0 of the lower convex hull of  $P^* = \{p_1^*, ..., p_n^*\}$ .





**Theorem:** Let  $P = \{p_1, \dots, p_n\}$  with  $p_i = (a_i, b_i, 0)$ . Let  $p_i^* = (a_i, b_i, a_i^2 + b_i^2)$  be the vertical projection of each point  $p_i$  onto the paraboloid  $z = x^2 + y^2$ . Then DT(P) is the orthogonal projection onto the plane z = 0 of the lower convex hull of

 $P^* = \{p^*_1, \dots, p^*_n\}$ .

 $p_{i, p_{k}}^{*} p_{k}^{*}$  form a (triangular) face of LCH( $P^{*}$ )

 $\Leftrightarrow$ 

The plane through  $p^*_{i,} p^*_{j,} p^*_{k}$  leaves all remaining points of P of unit above it

paraboloid 👄

The circle through  $p_i$ ,  $p_j$ ,  $p_k$  leaves all remaining points of P in its exterior



 $p_i, p_j, p_k$  form a triangle of DT(P)



Slide adapted from slides by Vera Sacristan.