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Measuring Similarity of Shapes

@ There are many different measures of similarity.

@ The Fréchet distance is a natural measure for continuous
shapes such as curves and surfaces.

@ Our prior work has focused on computing the Fréchet distance
between surfaces.

@ So what is the Fréchet distance?
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@ Consider the curves case again.

@ The points connected by leashes for a given walk correspond
to a 'morphing’ between the curves.
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Fréchet Distance |ldea

@ Consider the curves case again.

@ The points connected by leashes for a given walk correspond
to a 'morphing’ between the curves.

@ Intuitively we're trying to find a morphing between the curves
which minimizes the maximum distance any point is morphed.
This distance is the Fréchet distance of the curves.
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@ Likewise, in the case of surfaces one can consider a morphing
between them.
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Fréchet Distance Definition

Fréchet Distance Definition
o 6:(P,Q) = infy. prg suppep lp— (Pl

@ || - || is the Euclidean norm

@ o (sigma) ranges over orientation-preserving homeomorphisms
(our 'mapping’) that map each point p € P to an image point
g=o0(p) €Q

@ Each o corresponds to some walk. For each o,
suppep |lp — a(p)|| corresponds to the leash length. The
Fréchet distance is the minimum (infimum) leash length
across all possible o.
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Many Homeomorphisms

@ So, now that we know what it
is, how do you compute the
Fréchet distance of a pair of
surfaces?

@ Let us first consider the case
where the surfaces are simple
polygons (flat).

@ There are an infinite number of
homeomorphisms between a pair
of simple polygons.

&

o To efficiently compute their
Fréchet distance this search
space must be reduced.
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Simple Polygons Example

@ Consider this pair of polygons.

@ The idea is that P is subdivided
into convex portions and each of P
these are mapped over to Q.

@ For flat surfaces it suffices to
map the edges used to subdivide
P over to paths in Q.

@ These mapped paths subdivide Q
Q into portions which match
with those in P.

@ This is the rough idea of how
the Fréchet distance is
computed for simple polygons.
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Problem Review

For simple polygons the FD is polynomial time
computable.

For terrains and polygons with holes the FD is NP-hard to
compute.

There is a gap between these known results.

Are there more general classes of surfaces for which the
Fréchet distance can be computed in polynomial time?

We first review the simple polygons algorithm and then
consider extending it to a more general class of surfaces
which we call folded polygons.



Simple Polygons Algorithm [BBWO06]

» Next, we give a short P
summary of the simple
polygons algorithm.

~+ 7

ki



Simple Polygons Algorithm [BBWO06]

* There are an infinite P
number of
homeomorphisms
between a pair of simple

polygons.

» To efficiently compute @ 7
their Fréchet distance Q

the this search space

must be reduced.




Simple Polygons Algorithm [BBWO06]

* One could first consider O
the boundaries of the
polygons.

* The Fréchet distance
between closed polygonal
. o
curves can be computed in @

polynomial time. O

* The boundaries of two
simple polygons can be
compared with this.



Simple Polygons Algorithm [BBWO06]

* The authors prove that P
the Fréchet distance
between a convex
polygon and a simple
polygon is the same as
that between their @ o
boundary curves.




Simple Polygons Algorithm [BBWO06]

| » Unfortunately, this is not
always the case between
N two simple polygons.




Simple Polygons Algorithm [BBWO06]

* ldea: Restrict the class of mappings to consider

- Given two simple polygons P and Q

- Divide them up into matched pairs of convex
polygons and simple polygons.

- Then use the closed polygonal curves algorithm
mentioned before to check whether the distance is
within some € .



Simple Polygons Algorithm [BBWO06]

* “diagonals” in P are the line segments in a
convex subdivision of P

* “edges” in Q are the line segments in a convex
subdivision of Q

* Map the diagonals in a convex subdivision of P
to image curves in Q.

- [BBWO06] demonstrate that it suffices to map
diagonals to shortest paths in Q.

— Only consider a restricted class of mappings



Simple Polygons Algorithm
[BBWO06]: Example

Two simple polygons

P (Red) and @ (Blue) P Q

- =
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Simple Polygons Algorithm [BBWO06]

« The authors show that it is sufficient to test the
following two things to find if a homeomorphism
exists between the surfaces for distance ¢ .

Simple Polygons

- 0 (dP,dQ) < € (this
specifies a mapping of
the diagonal endpoints)

- For every diagonal in P,
the corresponding
shortest path in Q has
Fréchet distance
distance at most £ to it.



Simple Polygons Algorithm
IBBWO06]: Run Time

n = the complexity of Q

m = the complexity of P

K = the number of diagonals in P

T(N) = the time to multiply two NxN matrices

The Fréchet distance of two simple polygons can be com-
puted in time O (kT atrizmait(mn) log(mn)).




Folded Polygons

¢ * We extend the simple
5 o‘ , polygons algorithm to non-

flat surfaces.

é \Q » Specifically, we consider

piecewise linear surfaces
with a convex subdivision
which has an acyclic dual
graph (“folded polygons”)




Folded Polygons

* We extend this algorithm to
non-flat surfaces.

» Specifically, we consider
piecewise linear surfaces
with a convex subdivision
which has an acyclic dual
graph (“folded polygons”)

* No Interior vertices.




Folded Polygons

e Features:

- Folds only along line
segments.

— No holes.
— No self-intersection.




Simple Polygons Algorithm?

« Can we just use the simple polygons algorithm?



Simple Polygons Algorithm?

« Can we just use the simple polygons algorithm?

* Unfortunately, no:

- The simple polygons algorithm maps diagonals in P
to image curves which are shortest paths in the Q.

- When P is a folded polygon instead of a simple
polygon, we can find examples where the Fréchet
distance between the shortest path and the
diagonal is not optimal (i.e., some other path with
the same end points has smaller FD with the

diagonal).



Shortest Path Counter Example

* S, IS the shortest path between a and b,

but the diagonal d has smaller Frechet distance
to s, than to s..



Frechet Shortest Paths

* Fréchet shortest paths =
paths with Fréchet distance e/

£ to agiven € j

* The shortest path between €3 /

two points on the boundary —

of Q crosses some ., &
sequence of edges. *A
* We prove that any Fréchet shortest path Q

between those points crosses the exact
same edge seguence.



Frechet Shortest Paths

 We can find a Fréchet
shortest path between two
points on the boundary of
Q within Fréchet distance
¢ of adiagonal in time
O(n) if one exists. (n=#
edges in Q)

« Same run time as testing
for a shortest path in the
simple polygons algorithm.




Diagonal Monotonicity Test

« We modity the original simple polygons algorithm to use
this new class of paths.

« P and Q “pass the diagonal monotonicity test for ¢ ” iff:

Simple Polygons

- 0 (dP,dQ) < € (this
specifies a mapping of
the diagonal endpoints)

- For every diagonal in P,
the corresponding
shortest path in Q has
Fréchet distance
distance at most £ to it.
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- 0 (dP,dQ) < € (this - 0 (dP,dQ) < € (this
specifies a mapping of ) specifies a mapping of
the diagonal endpoints) the diagonal endpoints)

- For every diagonal in P, - For every diagonal in P, a
the corresponding corresponding Fréchet
shortest path in Q has j> shortest path in Q has
Fréchet distance Fréchet distance at most

distance at most € to it. e toit.



Diagonal Monotonicity Test

« We modity the original simple polygons algorithm to use
this new class of paths.

« P and Q “pass the diagonal monotonicity test for ¢ ” iff:

Simple Polygons Folded Polygons

- 0 (dP,dQ) < € (this - 0 (dP,dQ) < € (this
specifies a mapping of ) specifies a mapping of
the diagonal endpoints) the diagonal endpoints)

- For every diagonal in P, - For every diagonal in P, a
the corresponding corresponding Fréchet
shortest path in Q has j> shortest path in Q has
Fréchet distance Fréchet distance at most

distance at most £ to it. £ toit.



Problem of Tangled Image Curves

* Because we use Fréchet shortest paths instead
of shortest paths we have an additional
problem:

- The image curves may intersect an edge in the
convex decomposition in the wrong order.

* We refer to such image curves as being
tangled.



Problem of Tangled Image Curves

* The image curves
cross, thus the
subdivision of Q is no u @
longer valid. d, dy

* Only a toy example. / ﬁ. \
Can this really )—

happen?
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Results

« To ensure a homeomorphism exists between the surfaces
we must address such tangles. We consider three
approaches:

= Use an approximation algorithm which avoids the tangles
altogether. — poly-time approx. algorithm

= Compute the constraints posed by such tangles direcily. - fixed
parameter tractable algorithm

= Consider a special non-trivial class of folded polygons for which
we can use shortest paths instead of Fréchet shortest paths. —
poly-time algorithm

* Axis-aligned surfaces using L, distance metric.



Results

« To ensure a homeomorphism exists between the surfaces
we must address such tangles. We consider three
approaches:

= Use an approximation algorithm which avoids the tangles
altogether. — poly-time approx. algorithm

= Compute the constraints posed by such tangles direcily. - fixed
parameter tractable algorithm

= Consider a special non-trivial class of folded polygons for which
we can use shortest paths instead of Fréchet shortest paths. —
poly-time algorithm

* Axis-aligned surfaces using L, distance metric.

The run time for all three approaches is the same as that for the simple polygons
algorithm (plus an additional exponential factor for the FPT algorithm).



1) Approximation Algorithm

« Key ldea: Approximate away the tangles.



1) Approximation Algorithm

« Key ldea: Approximate away the tangles.

e Suppose P and Q pass the diagonal monotonicity test
fore . We prove that d (P,Q) < 9¢ .

* We can then optimize this € in polynomial time using
binary search and the diagonal monotonicity test.
Thus, we have a 9 approximation algorithm.

« S0, how do we prove & (P,Q) < 9¢ ?



9-Approximation: Proof Sketch

p  Choose adiagonaldinP
which cuts off an ear.

d
8 » To have a homeomorphism
between P and Q the
image curve of d in Q, call
: it d', must also cut off an
Q d
d; edalr.

« If another image curve d,’

crosses d‘ then we no
longer have a
homeomorphism.



9-Approximation: Proof Sketch

P » |dea: Let's map d to

d d the “upper envelope”
of the image curves,
call it

) * How much do we

Q) d y need to increase € to
! do this?




9-Approximation: Proof Sketch

P * Consider the pre-
d images of the points
where d' and d,’

CrosSs.

/ « We can use these to
Q) d} bound how far d is
from the part of d,’

that crosses above It.
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9-Approximation: Proof Sketch

d:"
e KT b
7 A1y < 2 < 2e4by
] d o o »
< ? b

« From triangle inequality: 0 -(ab,a,b,) < 2¢ .



9-Approximation: Proof Sketch

d " :
Q d1 dl '\ 1 Ty [é bl 1
a L S 2
J d OALLLLL LG -
a b

« From triangle inequality: 0 -(ab,a,b,) < 2¢ .



9-Approximation: Proof Sketch

Q d
J dy dl—C 8 o>
- a/]- ‘
d 1"\ § 28 bl

e Thus, 0 (ab,a’b’) < 3¢ .



9-Approximation: Proof Sketch

e Thus, 0 (ab,a’b’) < 3¢ .



9-Approximation: Proof Sketch

P  More complicated

d d, cases can occur with
additional image
curves.

 We show that these
cases can be
d, d. approximated with an
additional 6 factor
for a total of 9¢ .




9-Approximation: Proof Sketch

P . Using the above
approach we can
incrementally cut off
ears from P and map
them to Q, in order to
0 g’ obtain an overall

dl mapping witnessing

o0 (P,Q) < 9¢ .




9-Approximation: Proof Sketch

P . Using the above
approach we can

incrementally cut off
ears from P and map
them to Q, in order to

0 obtain an overall
d, mapping witnessing
o0 (P,Q) < 9¢ .



Folded Polygons Conclusion

* We gave the first results to compute, or
approximate, the Frechet distance for a class of
non-flat surfaces (“folded polygons”)

* Can the approximation factor be improved?

* |s there a poly-time algorithm for folded
polygons?
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Partial Matching between Surfaces
Using Fréchet Distance

Submitted to the Symposium on Computational
Geometry (SoCG) 2012
Authors: Jessica Sherette, Carola Wenk



Problem and Motivation

* This previous algorithm
matches the entirety of the
surfaces.

* An interesting variant to
consider is partial
matching.

« For certain applications we
would like to consider this
Q form of similarity.



Problem and Motivation

 Many possible
definitions.

- We examine one
possible definition.



Partial Matching Problem

« We consider the following problem:

Given two coplanar triangulated simple polygons P and () and

some € > (), decide whether there exists a simple polygon R C ()
such that 0p(P, R) < e.




Partial Matching Problem

« We consider the following problem:

Given two coplanar triangulated simple polygons P and () and
some € > (), decide whether there exists a simple polygon R C ()
such that 0p(P, R) < e.

 Notice that this definition is directed. P is matched
to some part of Q.

* Next we consider several simple cases of this
problem.




Partial Matching Problem

 |f P overlaps completely
with Q then we can use
R = P and epsilon = 0.




Partial Matching Problem

 |f P does not intersect Q
R then it is similar to
projection to the
boundary of Q.




Partial Matching Problem

< £  This case Is a bit harder.

| The points which overlap

with Q are not always
mapped straight down.

 How we map a point in P
to a point in Q depends
on how other points can
be mapped.




Partial Matching Problem

 Finally note the following:

- It is NP-hard to decide the partial Fréchet
distance (for this def.) between two polygons
with holes or two terrains.

« This can be shown using the same reductions
as outlined in [BBS10].



Partial Matching Problem

« We adapt the algorithm for simple polygons to
one for our problem.

* This yields a polynomial time algorithm.

« Qurs is the first algorithm for computing the
partial FD between surfaces.



Partial Matching Problem

« We adapt the algorithm for simple polygons to
one for our problem.

* This yields a polynomial time algorithm.

« Qurs is the first algorithm for computing the
partial FD between surfaces.

* Next we give some additional details about the
simple polygons algorithm.



Simple Polygons Algorithm [BBWO06]

» As mentioned before we P
can compute the FD
between the boundaries
of two simple polygons in
polynomial time.

o
 How do you compute @

this? Q



Simple Polygons Algorithm [BBWO06]

* The free space diagram (FSD) encodes which
points on the boundary on the polygons may be
mapped together with distance epsilon.

qd1
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Simple Polygons Algorithm [BBWO06]

* Here is part of a

simple polygon P. P
. Firgt consi.der the M Pa p5_
pointp 3inP.




Simple Polygons Algorithm [BBWO06]

« Consider the points
within epsilon I

distance of p_3. \0331——??2 G
- (Euclidean distance)

pP3

e o



Simple Polygons Algorithm [BBWO06]

* The points on the
boundary Q in this
disc are those that
p_3 can be mapped
to.

e 4H



Simple Polygons Algorithm [BBWO06]

* Note the highlighted
parts.




Simple Polygons Algorithm [BBWO06]

« Below is a small part of the free space diagram
(FSD).
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Simple Polygons Algorithm [BBWO06]

» White points along the line segment are ones
that p_3 can be mapped to.
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Simple Polygons Algorithm [BBWO06]

« Below is an example of an actual FSD between
two simple polygons for some epsilon.

qd1

Q. P2 g7 ( q7/ //\) ~V //\) N
P if R 27T |
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Simple Polygons Algorithm [BBWO06]

» Decide if a monotone path from the bottom of
the FSD to the top which maps every point in P
once and only once exists. (see blue path)

qd1

Q. P2 g7 ( q7/ //\) ~V //\) N
P if R 27T |
s g5 > <\ 7 AN <\ /|
2 p N 50| N\ = N L
q4 < <
£
g3 |CT—~] AN W V1 A\ W
Q pe: — o e
P N q1
p1pP2 P3 P4 P5 Pe6 p1P2 P3 P4 P5 DPs6 Pl

Ps g4 \ /\ y
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Simple Polygons Algorithm [BBWO06]

* If such a path exists (plus the diagonal detalls
from before) then P and Q are within Fréchet
distance epsilon (see green line segment).

qd1

Q. P2 g7 ( q7/ //\) ~V //\) N
P if R 27T |
s g5 > <\ 7 AN <\ /|
2 p N 50| N\ = N L
q4 < <
£
g3 |CT—~] AN W V1 A\ W
Q pe: — o e
P N q1
p1pP2 P3 P4 P5 Pe6 p1P2 P3 P4 P5 DPs6 Pl

Ps g4 \ /\ y

aP OP




Partial Matching Algorithm: FSD

» We want to adapt this to our problem.



Partial Matching Algorithm: FSD

We want to adapt this to our problem.

The FSD in the simple polygons algorithm pairs points
on the boundary of P to points on the boundary of
Q.

We want to map points on the boundary of P to any
points in Q.

We use a 3d FSD diagram between the boundary of
P and Q.



Partial Matching Algorithm

« Below is the 3D FSD diagram associated with
the simple polygons P and Q for some epsilon.
We refer to the portion of a FSD associated with
a point as a slice of the FSD.
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Partial Matching Algorithm

« We cut the boundary of P open at the point p_1
so it appears twice in the slices. Naturally, our
mapped boundary must start and end at the
same point.
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Partial Matching Algorithm

 We now want to find a monotone path through

the FSD from the first slice to the last slice.

This yields a mapping of the boundary of P into
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Partial Matching Algorithm

* Note also that the path is only required to be
monotone along the boundary of P now. (there
are issues with Q as well but we deal with them

later)

ezl

pig \ P e s
Am drd drd
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Partial Matching Algorithm

 To find such a path in the FSD we propagate

reachability information in the FSD through the
slices.
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Partial Matching Algorithm

« Consider a pair of adjacent
/ slices in the FSD.




Partial Matching Algorithm

« Consider a pair of adjacent
slices in the FSD.

 Apointa_ 2is reachable
from a_1 in the FSD iff the
shortest path in Q between
a_2 and a_3 is within FD
epsilon of the line segment

p_4p 3.

* (it follows from a simple
shortcutting argument that
one can consider only
shortest paths )




Partial Matching Algorithm

« Consider a pair of adjacent

Q) slices in the FSD.
5 pfé'- « A point a_2 is reachable
— from a_1 in the FSD iff the
agc shortest path in Q between
T a_2 and a_3 is within FD
‘o epsilon of the line segment
. p_4p_3.
s . Ol ™
2 D3 5 ! ] * (it follows from a simple

shortcutting argument that
one can consider only
shortest paths )



Partial Matching Algorithm

« Consider a pair of adjacent
slices in the FSD.

 Apointa_ 2is reachable
from a_1 in the FSD iff the

shortest path in Q between
a 2 and a_3is within FD
epsilon of the line segment

p_4p_3.
] * (it follows from a simple

shortcutting argument that
one can consider only
shortest paths )



Partial Matching Algorithm

e Soa 2isreachable
froma 1buta 3is

not.

* There are many
possible points to
map to in the disc.

: How can this

'] avoided?




Partial Matching Algorithm: FSD

 Lets go through this
simple example again I

but for the 3D FSD. \31——??2 B
» Again consider the

pointp_3inP.




Partial Matching Algorithm: FSD

» Again the points
within epsilon I

distance of p_3. \0331——??2 P4 Ps

pP3

e o



Partial Matching Algorithm: FSD

« Now we are
interested in the
points in Q which are
In this disc. Those
are the points that
p_3 can be mapped
to.

e 4H



Partial Matching Algorithm: FSD

* Note the highlighted

parts. /o
pPo P4 ps
P1 on Lo
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Partial Matching Algorithm: FSD

* Here is the part of the 3D
FSD | |
tha ot o 5 associated with

. py P2 P4 ps
7 5 '?% g10 FSD
o . g6
O ::> g1 g2 | [7°
qa{ g7
- as 1Y
g4 P3 48 7
g i da qs

e 4



Partial Matching Algorithm:
Neighborhoods

 We define a
neighborhood of a point
IS a maximal connected
subset (of the
Intersection of the
epsilon disc around p
and Q.)

* |n our example there are
two neighborhoods
associated with the point

p_3.




Partial Matching Algorithm

* These neighborhoods
simplify the approach.

* Let N1 and N2 be a pair

of neighborhoods.

« We prove that if a point
iIn N1 is reachable from a
point in N2 then every
point in N1 is reachable

] from every point in N2




Partial Matching Algorithm

* From this we generate a
polynomial time

algorithm to find such a
path.

« We actually get a set of
neighborhoods
associated with such a
path.

] « We refer to this as a

(Q,eps)-valid set of
neighborhoods.



Partial Matching Algorithm

« So does this give us a simple polygon R in Q
with FD epsilon to P?



Partial Matching Algorithm

« So does this give us a simple polygon R in Q
with FD epsilon to P?

- Not quite. The polygon we get in Q may not be
simple.

- Fortunately we can prove that an R which is a
simple polygon can always be found.



Partial Matching Algorithm: Proof

* This proof is |
somewhat long.

 We give a short
summary of the

algorithm to compute " A\V
such a polygon R. B

. —
-




Partial Matching Algorithm: Proof

 We have a simple
polygon P.




Partial Matching Algorithm: Proof

 We have a simple
polygon P.

 We have a simple
polygon Q. \/ \/




Partial Matching Algorithm:

 We have a simple
polygon P.

 We have a simple
polygon Q.

 We have a (Q,eps)-
valid set of
neighborhoods for the
points in P.

Proof

\/

\/

\/

| /\




Partial Matching Algorithm: Proof

* To find such a R we
iteratively map points

of P to Q. y y Q
» At each iteration we V =
show that the points
can be mapped to i /\
form a simple polygon /-

in Q.




Partial Matching Algorithm: Proof

* To find such a R we
iteratively map points

of P to Q. y y Q
» At each iteration we V =
show that the points
can be mapped to i /\
form a simple polygon /-

in Q.




Partial Matching Algorithm: Proof

« Specifically, we allow
remapping the points

within their associated Q
neighborhood in the \v/ \V/
valid set. .
e By properties of /\
neighborhoods the T

FD remains less than
epsilon.




Partial Matching Algorithm: Proof

* Next we go through a
simple example
demonstrating the Q

algorithm. \/ \f

V —
.’. -"’._ .““
:I-__-"' ‘/\




Partial Matching Algorithm: Proof

e SO we want to
iteratively map points
of P to Q.

...............




Partial Matching Algorithm: Proof

* SO0 we want to
iteratively map points

of P to Q. O
* In our initial step we V ----------- A \/ ...... .
choose three points : R

which form a triangle in e

. 4 -'-" Q-‘I:
P Y
. J:::-..-.........#




Partial Matching Algorithm: Proof

* SO0 we want to
iteratively map points

of P to Q. O

.+ In our initial step we ey
choose three points Natan-s o
which form a triangle in S
P. ATTESSSNNN /\

* We want to map each
point a in its associated
neighbornood N_a in
Q.



Partial Matching Algorithm: Proof

* Note that in this case
a is actually in the

neighborhood N_a. 0
VoV

---------------




Partial Matching Algorithm: Proof

* Note that in this case
a is actually in the

neighborhood N_a. o
 We can just choose Va, ''''''''''''''' \/ ______ _ P

its mapping a' to be a.

---------------




Partial Matching Algorithm: Proof

* Note that in this case
a is actually in the

neighborhood N_ a. O
+ We can just choose BV A— Vo
its mapping a' to be a. RA "
 (Similar for the other /\

points of the triangle)



Partial Matching Algorithm: Proof

* |n the iterative step, we
add points in P which are

connected to the points
already mapped. «
 |In this case there is only V """"""""""""""" \‘/p
one possible point to add. RA A
PP ESSMNN /\




Partial Matching Algorithm: Proof

* |n the iterative step, we
add points in P which are
connected to the points
already mapped.

* |n this case there is only
one possible point to add.




Partial Matching Algorithm: Proof

* |n the iterative step, we

add points in P which are
connected to the points
already mapped.

In this case there is only

one possible point to add.

As mentioned earlier we
want to map it inside the
neighborhood associated
with it in a valid set.




Partial Matching Algorithm: Proof

In the iterative step, we
add points in P which are
connected to the points
already mapped.

In this case there is only
one possible point to add.

As mentioned earlier we
want to map it inside the
neighborhood associated
with it in a valid set.

(again we can just map to
original point)



Partial Matching Algorithm: Proof

* The next point is easy
as well.




Partial Matching Algorithm: Proof

* This point is a bit
different.




Partial Matching Algorithm: Proof

* This point is a bit
different.

e The neighborhood
does not contain the
original point.




Partial Matching Algorithm: Proof

* This point is a bit
different.

e The neighborhood
does not contain the
original point.

* |t has to be mapped
inside Q.




Partial Matching Algorithm: Proof

* This point is a bit
different.

e The neighborhood
does not contain the
original point.

* |t has to be mapped
inside Q.

* The previous points
are connected to it via
shortest paths in Q.




Partial Matching Algorithm: Proof

e Using shortest paths
Is okay by properties
of a valid set of
neighborhoods.




Partial Matching Algorithm: Proof

e Using shortest paths
Is okay by properties
of a valid set of Q

neighborhoods. \/ \/

* Line segment on the
boundary of P and a
shortest path in Q. ° ]




Partial Matching Algorithm: Proof

e Using shortest paths
Is okay by properties
of a valid set of
neighborhoods.

* Line segment on the
boundary of P and a
shortest path in Q.




Partial Matching Algorithm: Proof

e The next point is
easy.




Partial Matching Algorithm: Proof

e The next point is
again easy.




Partial Matching Algorithm: Proof

* This point is also a bit
different.




Partial Matching Algorithm: Proof

» This point is also a bit
different.

» Adding the point and its
associated shortest
paths yields a self-
intersecting polygon R.




Partial Matching Algorithm: Proof

» This point is also a bit
different.

» Adding the point and its
associated shortest
paths yields a self-
intersecting polygon R.

e The neighborhood
around the point a is
crossed by the added

image curves.




Partial Matching Algorithm: Proof

« We now need to remap a
to a point below the
shortest paths.




Partial Matching Algorithm: Proof

« We now need to remap a
to a point below the
shortest paths.




Partial Matching Algorithm: Proof
R

« We now need to remap a
to a point below the
shortest paths.

 We prove that the
neighborhood of a point
will never be completely
covered by R.



Partial Matching Algorithm: Proof
R

« We now need to remap a
to a point below the
shortest paths.

 We prove that the
neighborhood of a point
will never be completely
covered by R.

« We also update the point
iIn a way to avoid
cascading chains of
updates.



Partial Matching Algorithm:
Constrained Embedding Problem

 This proof requires solving a variant of the
constrained embedding problem.

* We give more details about this in the future
work section.



Partial Matching Algorithm

* The described algorithm solves the decision
variant.

* We can optimize epsilon such that there exists
a simple polygon R in Q with FD epsilon to P.

- Similar to the simple polygons algorithm: We
compute the constraints between P and Q. Sort
them. And perform a binary search on these using
the decision variant outlined above.



Partial Matching Algorithm:
Conclusion

» We presented the first algorithm for computing
partial FD between surfaces. This algorithm
runs in polynomial time.

* In the future it would be interesting to consider
other variants of partial FD.

* It may also be interesting to consider extending
this algorithm other classes of surfaces.



