Any Monotone Function Is Realized by Interlocked Polygons

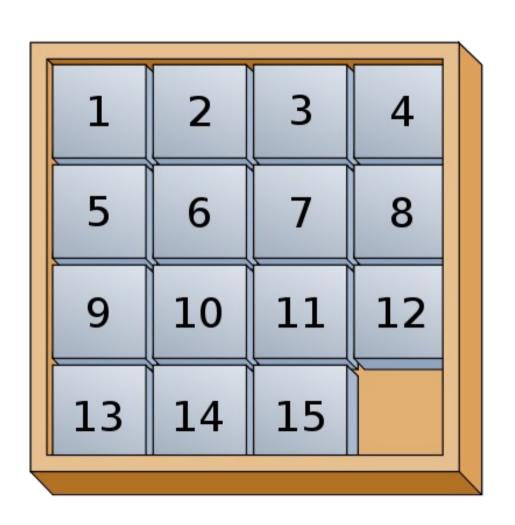
Authors: Erik Demaine, Martin Demaine, and Ryuhei Uehara

Algorithms 2012

Outline

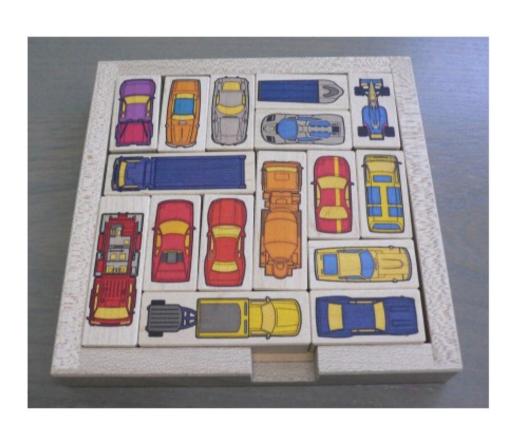
- Introduction:
 - Sliding Block Puzzles
 - Interlocked Polygons
 - Monotone Boolean Functions
- PSPACE-completeness
- Nondeterministic Constraint Logic
 - Introduction
 - True Quantified Boolean Formulas (TQBF)
 - Proof Idea

Sliding Block Puzzles



- There are many variations of sliding block puzzles.
- The idea is to go from an initial state to a goal state through a series of valid moves.
- 15 puzzle is one of the first such puzzles studied.
- Left is the goal state of the puzzle.

Sliding Block Puzzles

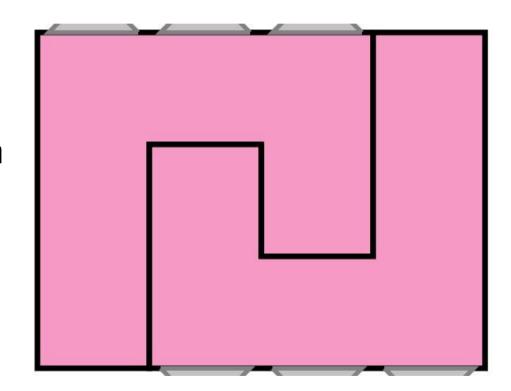


- Rush Hour is another sliding block puzzle variation.
- The goal is to help a specified car escape a traffic jam.
- Note that in both of these problems the less objects (i.e. tiles/cars) the easier the puzzle is to solve.

Sliding Block Puzzles

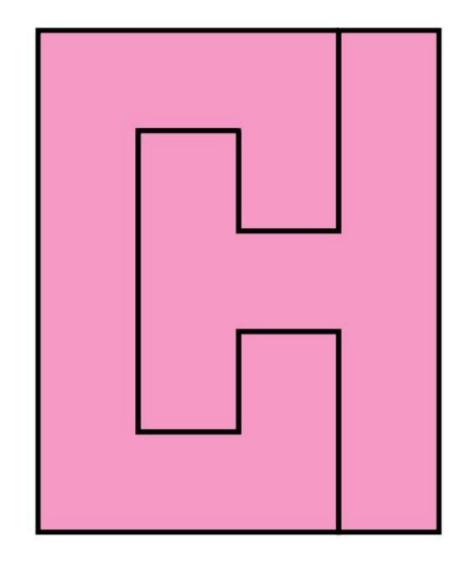
- 3d variants are possible too naturally but we will see that 2d is already hard.
- The authors introduce the interlocked polygons problem as a generalization of such puzzles.

- Suppose we have a set of n non-overlapping simple polygons.
- The polygons are interlocked if no subset can be separated arbitrarily far from the rest.
 - (i.e. separated using translations/rotations which do not cause polygons to overlap)



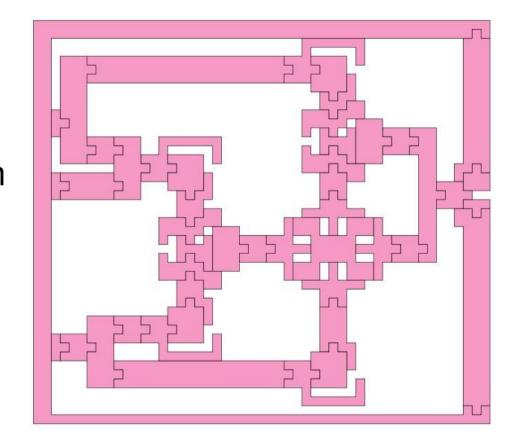
Example here.

- Suppose we have a set of n non-overlapping simple polygons.
- The polygons are interlocked if no subset can be separated arbitrarily far from the rest.
 - (i.e. separated using translations/rotations which do not cause polygons to overlap)



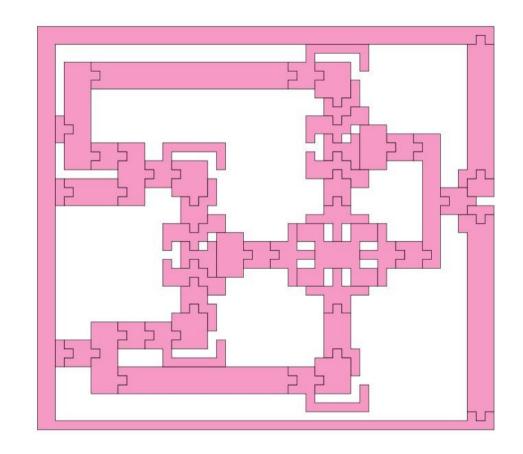
Example here.

- Suppose we have a set of n non-overlapping simple polygons.
- The polygons are interlocked if no subset can be separated arbitrarily far from the rest.
 - (i.e. separated using translations/rotations which do not cause polygons to overlap)



Example here.

- The new puzzle they introduce is the exploding sliding block puzzle.
- Such a puzzle asks if all polygons of a given collection of polygons can be free.



- If one allows removing polygons from the set, an interlocked set of polygons can become free.
- Removing polygons from the set cannot cause a free set to become interlocked.
- They use these properties to reduce solving a monotone boolean function to the interlocked polygon problem.

• The authors want to say something about the hardness of this new problem.

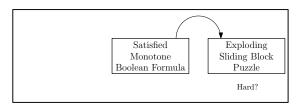
Exploding
Sliding Block
Puzzle
Hard?

- The authors want to say something about the hardness of this new problem.
- Similar to the lowerbound proofs they are going to reduce solving a known hard problem to solving this problem.

Exploding
Sliding Block
Puzzle

Hard?

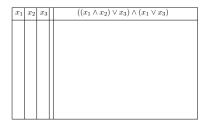
- The authors want to say something about the hardness of this new problem.
- Similar to the lowerbound proofs they are going to reduce solving a known hard problem to solving this problem.
- We begin by considering reducing from an easy problem which is related to the problem they will eventually reduce to solving the Exploding Sliding Block Problem.



- You are given a Monotone Boolean Formula and a set of assignments for the variables.
- (Monotone indicates that variables only appear as positive literals in the formula)
- This is a Satisfied Monotone Boolean Formula if the formula evaluates to TRUE for the given assignments of the variables.

 $((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$

- You are given a Monotone Boolean Formula and a set of assignments for the variables.
- (Monotone indicates that variables only appear as positive literals in the formula)
- This is a Satisfied Monotone Boolean Formula if the formula evaluates to TRUE for the given assignments of the variables.



- You are given a Monotone Boolean Formula and a set of assignments for the variables.
- (Monotone indicates that variables only appear as positive literals in the formula)
- This is a Satisfied Monotone Boolean Formula if the formula evaluates to TRUE for the given assignments of the variables.

x_1	x_2	x_3	$((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$
T	T	T	

- You are given a Monotone Boolean Formula and a set of assignments for the variables.
- (Monotone indicates that variables only appear as positive literals in the formula)
- This is a Satisfied Monotone Boolean Formula if the formula evaluates to TRUE for the given assignments of the variables.

x_1	x_2	x_3	$((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$
T	T	T	T

- You are given a Monotone Boolean Formula and a set of assignments for the variables.
- (Monotone indicates that variables only appear as positive literals in the formula)
- This is a Satisfied Monotone Boolean Formula if the formula evaluates to TRUE for the given assignments of the variables.

$((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$	x_3	x_2	x_1
T	T	T	T
	F	T	T

- You are given a Monotone Boolean Formula and a set of assignments for the variables.
- (Monotone indicates that variables only appear as positive literals in the formula)
- This is a Satisfied Monotone Boolean Formula if the formula evaluates to TRUE for the given assignments of the variables.

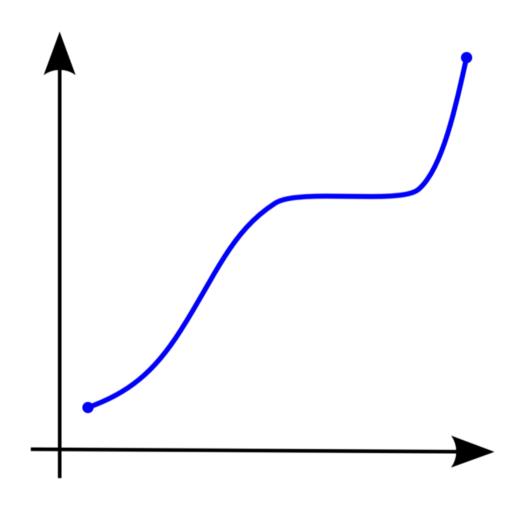
x_1	x_2	x_3	$((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$
T	T	T	T
T	T	F	T

- You are given a Monotone Boolean Formula and a set of assignments for the variables.
- (Monotone indicates that variables only appear as positive literals in the formula)
- This is a Satisfied Monotone Boolean Formula if the formula evaluates to TRUE for the given assignments of the variables.

			(/	
x_1	x_2	x_3	$((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$	
T	T	T	T	
T	T	F	T	
T	F	T	T	
T	F	F	F	
F	T	T	T	
F	T	F	F	
F	F	T	T	
F	F	F	F	

Monotone Boolean Functions

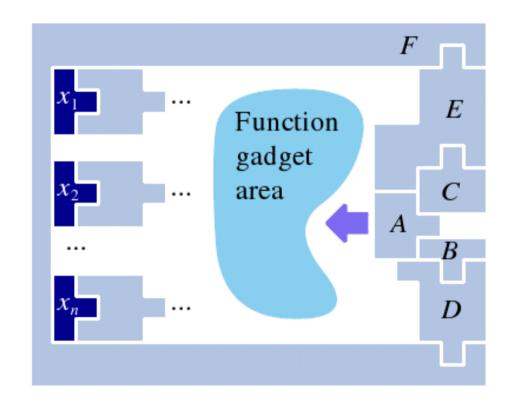
- What is a Monotone Boolean Function?
 - All variables appear as positive literals.
 - (Only ANDs and ORs allowed.)
- Thus, a variable being assigned as true cannot cause the function to become false.



$$f(x_1, x_2, x_3) = ((x_1 \land x_2) \lor x_3) \land (x_1 \lor x_3)$$

Reduction Gadgets: Frame

- All of the gadgets are constructed in a frame.
- This frame ensures that the set of polygons can be separated iff the polygon A can be moved left.
- The variables of f appear as polygons on the left hand side of the frame.
- Removing them corresponds to setting them to true.

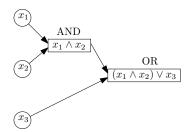


$$((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$$

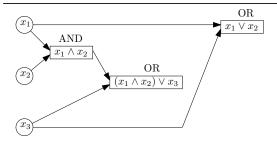
$$(x_3)$$

$$((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$$

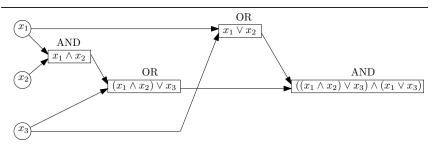
$$((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$$



$$((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$$



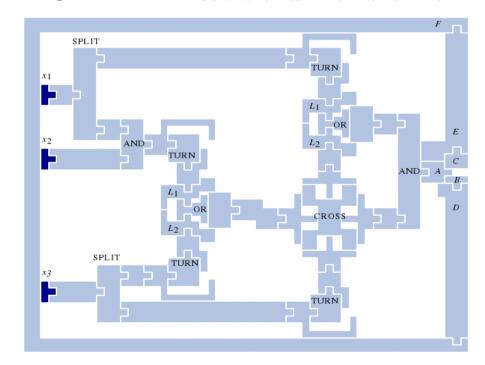
$$((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$$



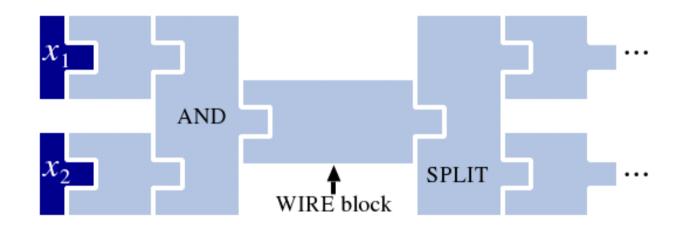
Reduction Gadgets: Frame

- All of the gadgets are constructed in a frame.
- This frame ensures that the set of polygons can be separated iff the polygon A can be moved left.
- The variables of f appear as polygons on the left hand side of the frame.
- Removing them corresponds to setting them to true.

Figure 8. A construction for $f(x_1, x_2, x_3) = ((x_1 \land x_2) \lor x_3) \land (x_1 \lor x_3)$.

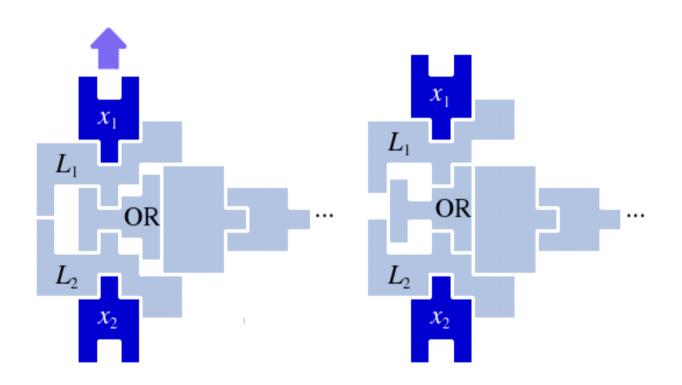


Reduction Gadgets: And/Split

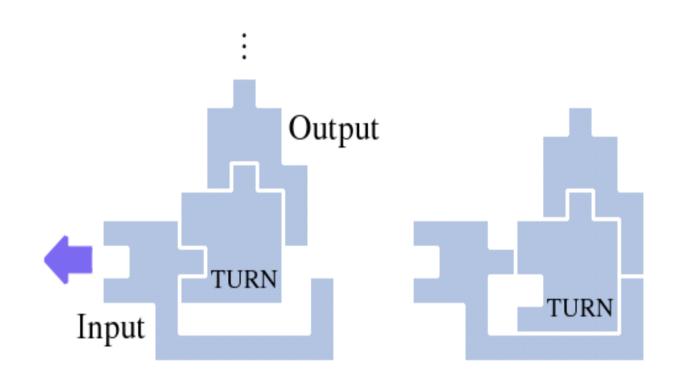


• The And and Split gadgets are mirrors of each other.

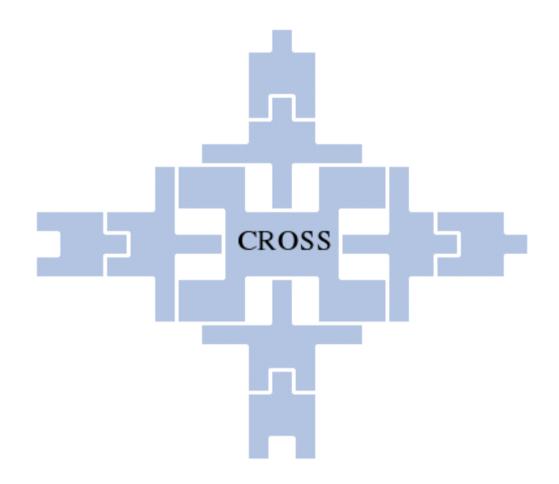
Reduction Gadgets: Or



Reduction Gadgets: Turn



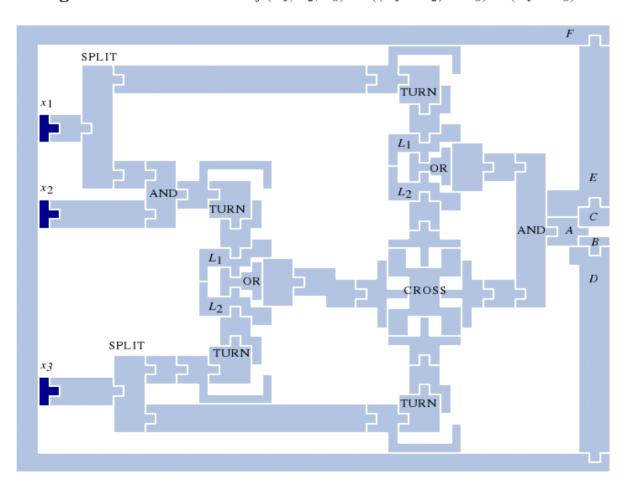
Reduction Gadgets: Crossover



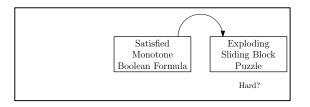
 Note that for all of these gadgets the operations are reversible. (i.e. can be undone)

Reduction Gadgets

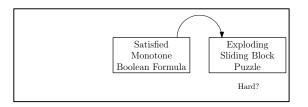
Figure 8. A construction for $f(x_1, x_2, x_3) = ((x_1 \land x_2) \lor x_3) \land (x_1 \lor x_3)$.



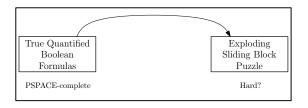
 Of course, Monotone Boolean Formula is an easy problem to solve so this doesn't say much about the difficulty of the Exploding Sliding Block Problem to reduce from it.



- Of course, Monotone Boolean Formula is an easy problem to solve so this doesn't say much about the difficulty of the Exploding Sliding Block Problem to reduce from it.
- We now consider a more difficult problem: True Quantified Boolean Formulas



- Of course, Monotone Boolean Formula is an easy problem to solve so this doesn't say much about the difficulty of the Exploding Sliding Block Problem to reduce from it.
- We now consider a more difficult problem: True Quantified Boolean Formulas



True Quantified Boolean Formulas

True Quantified Boolean
 Formulas contain universal and existential quantification instead of having a fixed assignment of the variables.

$$\forall x_1 \exists x_2 \forall x_3 : ((x_1 \land x_2) \lor x_3) \land (x_1 \lor x_3)$$

True Quantified Boolean Formulas

True Quantified Boolean
 Formulas contain universal and existential quantification instead of having a fixed assignment of the variables.

			$\forall x_1 \exists x_2 \forall x_3 : ((x_1 \land x_2) \lor x_3) \land (x_1 \lor x_3)$
x_1	x_2	x_3	$((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	F
F	F	T	T
F	F	F	F

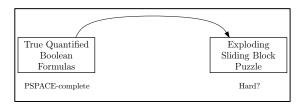
True Quantified Boolean Formulas

- True Quantified Boolean
 Formulas contain universal and existential quantification instead of having a fixed assignment of the variables.
- $\forall x_1 \exists x_2 \forall x_3$: $((x_1 \land x_2) \lor x_3) \land (x_1 \lor x_3)$ evaluates to FALSE.

$\forall x_1 \exists x_2 \forall x_3 : ((x_1 \land x_2) \lor x_3) \land (x_1 \lor x_3)$							
x_1	x_2	x_3	$((x_1 \wedge x_2) \vee x_3) \wedge (x_1 \vee x_3)$				
T	T	T	T				
T	T	F	T				
T	F	T	T				
T	F	F	F				
F	T	T	T				
F	T	F	F				
F	F	T	T				
F	F	F	F				

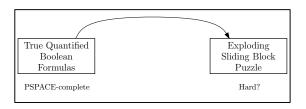
Hardness Reduction

On last wrinkle.



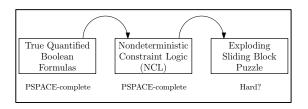
Hardness Reduction

- On last wrinkle.
- They reduce from a True Quantified Boolean Formulas to a problem, NCL, which they then reduce to the Exploding Sliding Block Problem.



Hardness Reduction

- On last wrinkle.
- They reduce from a True Quantified Boolean Formulas to a problem, NCL, which they then reduce to the Exploding Sliding Block Problem.



Monotone Boolean Functions

- This completes the reduction.
 - Interesting gadgets but is this problem at all hard?
 - This reduction may suggest that the exploding sliding block puzzle is easy.

Monotone Boolean Functions

- This completes the reduction.
 - Interesting gadgets but is this problem at all hard?
 - This reduction may suggest that the exploding sliding block puzzle is easy.
- The authors go on to show that the exploding sliding block puzzle is PSPACE-complete.

Monotone Boolean Functions

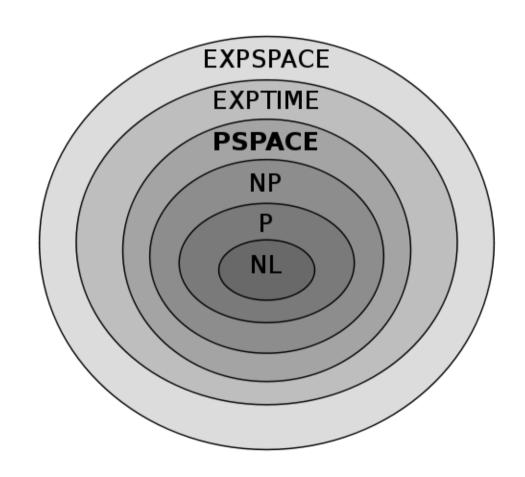
- This completes the reduction.
 - Interesting gadgets but is this problem at all hard?
 - This reduction may suggest that the exploding sliding block puzzle is easy.
- The authors go on to show that the exploding sliding block puzzle is PSPACE-complete.
 - Really?

Outline

- Introduction:
 - Sliding Block Puzzles
 - Interlocked Polygons
 - Monotone Boolean Functions
- PSPACE-completeness
- Nondeterministic Constraint Logic
 - Introduction
 - True Quantified Boolean Formulas (TQBF)
 - Proof Idea

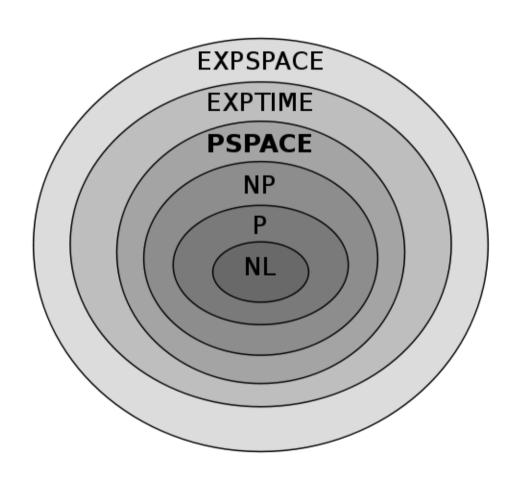
PSPACE-Complete?

- PSPACE is the class of problems which can be decided in polynomial space.
- NP is contained in it (may not be strict).
- Intuitively, PSPACEcomplete problems are harder than NP-complete problems.



PSPACE-Complete?

- The details of the PSPACE-Completeness proof are largely absent from this paper.
- The authors reduce from a problem called Nondeterministic Constraint Logic (NCL).
- We give a quick overview of this problem next and examine why it is hard to solve.



Outline

- Introduction:
 - Sliding Block Puzzles
 - Interlocked Polygons
 - Monotone Boolean Functions
- PSPACE-completeness
- Nondeterministic Constraint Logic
 - Introduction
 - True Quantified Boolean Formulas (TQBF)
 - Proof Idea

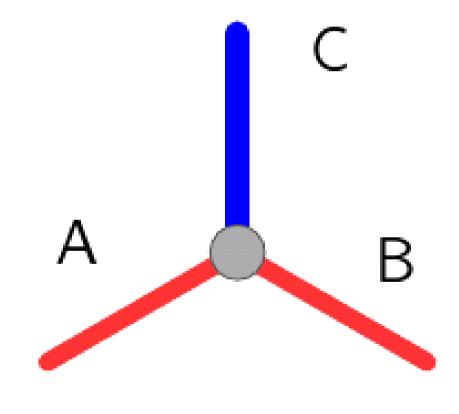
Idea:

- Given a directed graph.
- Each vertex has a weight requirement it must meet.
- Each edge has a weight that it contributes to one of the two vertices it's adjacent to.
- The direction of the edge determines which vertex gets the weight.
- The direction of edges can be flipped if the weight requirement is still met on its vertices after the flip.

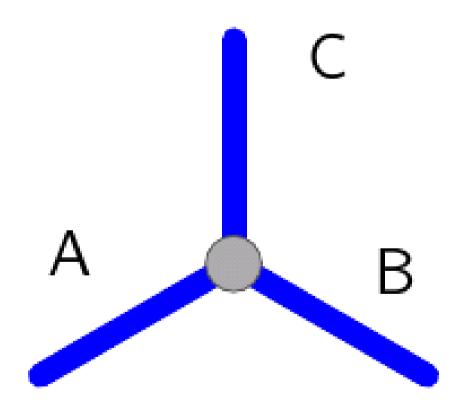
Goal:

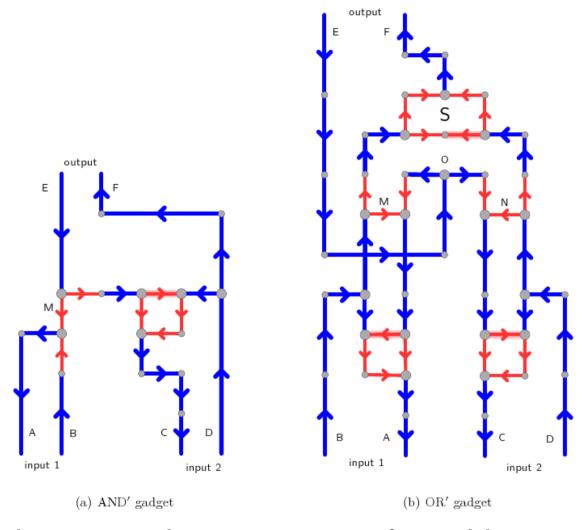
- Decide if a given edge e in the graph can be flipped.
- (through a sequence of valid flips of other edges)

- They further restrict this such that:
 - each vertex has a weight requirement of 2.
 - each edge has weight 1
 or 2 (red or blue respectively).
- The structure to the right behaves similar to an AND.



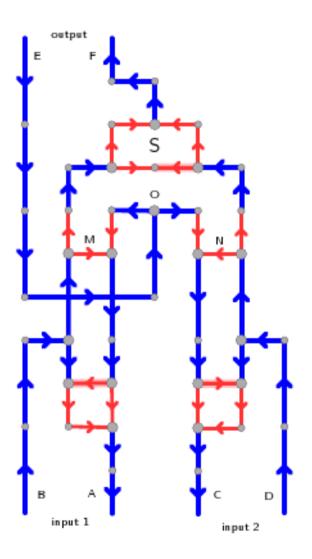
- They further restrict this such that:
 - each vertex has a weight requirement of 2.
 - each edge has weight 1
 or 2 (red or blue respectively).
- The structure to the right behaves similar to an OR.



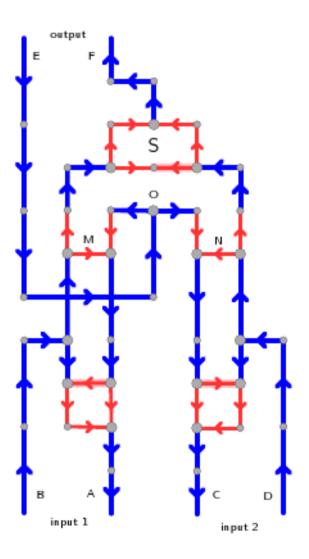


Naturally these can be more complex with many vertices.

- They want to show that NCL is PSPACE-complete
- To show this they reduce from True Quantified Boolean Formulas (TQBF).
- Next we introduce this problem.



- They want to show that NCL is PSPACE-complete
- To show this they reduce from True Quantified Boolean Formulas (TQBF).
- Next we introduce this problem.
- (note: this only gives the hardness result but the other half of the completeness proof is trivial)



True Quantified Boolean Formulas (TQBF)

- Deciding if a fully quantified boolean formula is true is PSPACE-complete.
- This serves as the canonical complete problem for PSPACE.
- TQBF = { <F> : F is a true fully quantified boolean formula }

$$\forall x \exists y \forall w \cdots \exists z \left[(x \lor y) \land \cdots \land (\overline{z} \lor x \lor \overline{w}) \right]$$

TQBF to NCL Reduction

- To do this they create gadgets which emulate existential and universal quantification.
- This is possible do to the reversible nature of computations using NCL.

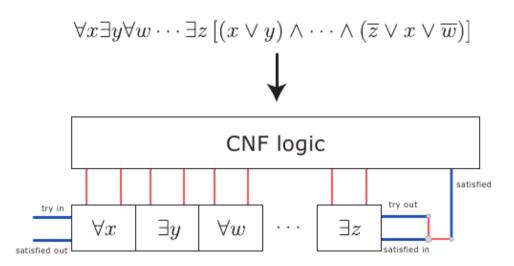
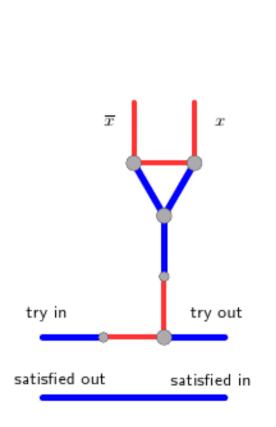
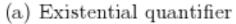
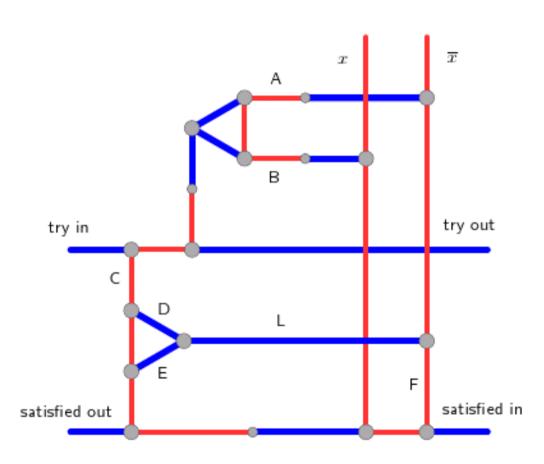


Figure 5-4: Schematic of the reduction from Quantified Boolean Formulas to NCL.

TQBF to NCL Reduction



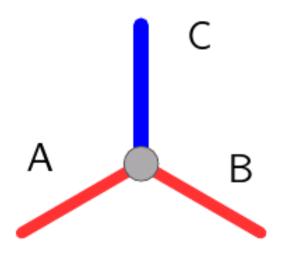


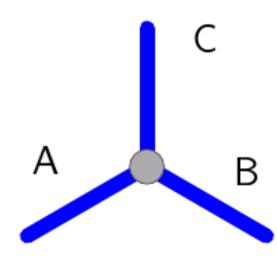


(b) Universal quantifier

AND/OR NCL Variant

- Interestingly they can show that all of their gadgets can be built using only the simple AND and OR gadgets.
- Thus interest in problems which simulate monotone boolean functions.
- These problems only need to emulate these two AND and OR gadgets to reduce to NCL.





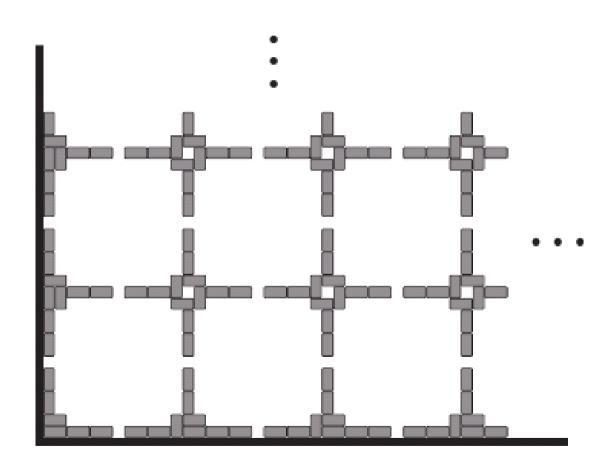
Summary of Proof

- Exploding Sliding Block Puzzle
- ←
- AND/OR NCL
- ←
- TQBF

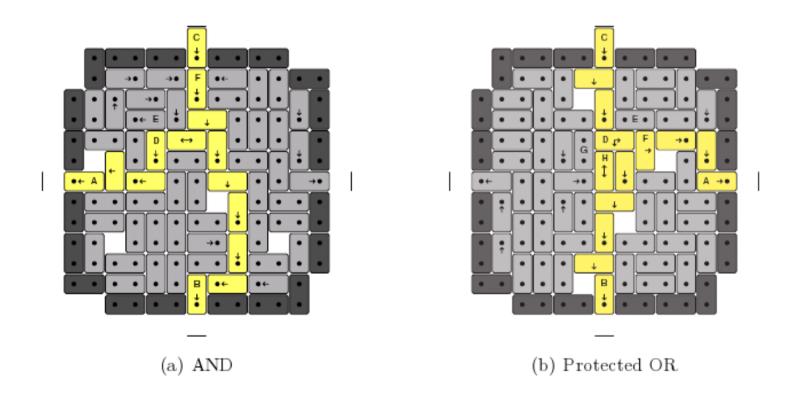
Variants of Interlocked Polygons

- Using the AND/OR NCL reduction one can prove PSPACE-Completeness for even simpler variants of the Exploding Sliding Block Puzzle.
- In particular the authors can show that the problem is hard even when all blocks are rectangles except one.

Variants of Interlocked Polygons



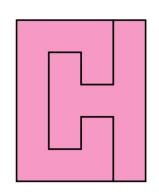
Variants of Interlocked Polygons

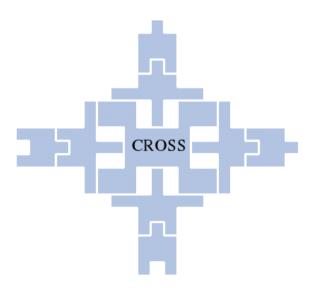


Conclusions

- Deciding if polygons are interlocked yields a surprisingly difficult problem.
- The framework for proving PSPACEcompleteness with NCL is impressively simple.
- NCL was used to show many such simple games are PSPACE-complete. So many that I couldn't even begin to cover them or all the various extensions to NCL.

Thank You! Questions?





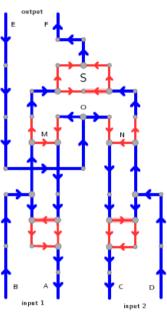
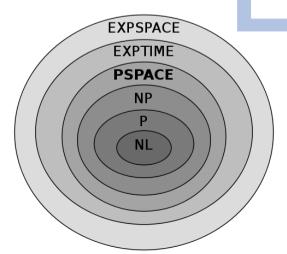
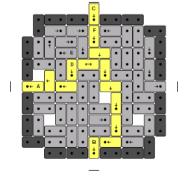
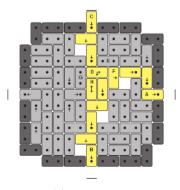


Figure 8. A construction for $f(x_1,x_2,x_3)=((x_1\wedge x_2)\vee x_3)\wedge (x_1\vee x_3).$





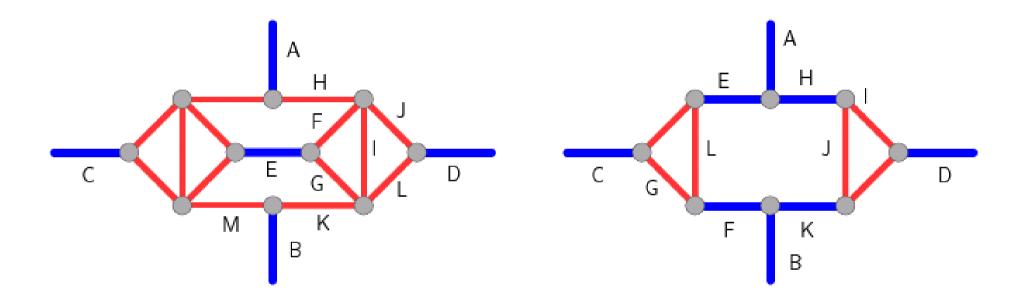




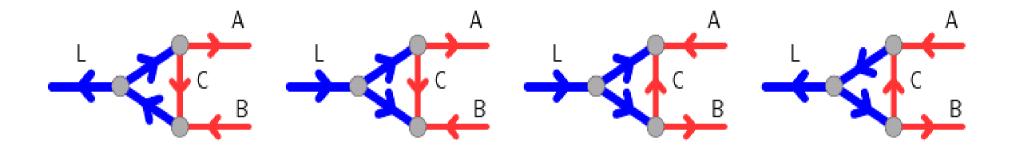
(a) AND

(b) Protected OR

NCL Cross



NCL Latch



- (a) Locked, A active
- (b) Unlocked, A active (c) Unlocked, B active (d) Locked, B active

Figure 5-6: Latch gadget, transitioning from state A to state B.