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Sliding Block Puzzles
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 There are many variations
of sliding block puzzles.

 Theideais to go from an
Initial state to a goal state
through a series of valid
moves.

* 15 puzzle is one of the first

such puzzles studied.

» Leftis the goal state of the

puzzle.



Sliding Block Puzzles

« Rush Hour is another
sliding block puzzle
variation.

« The goalisto help a
specified car escape a
traffic jam.

* Note that in both of these
problems the less objects
(i.e. tiles/cars) the easier
the puzzle is to solve.




Sliding Block Puzzles

» 3d variants are possible
too naturally but we will
see that 2d is already hard.

« The authors introduce the
iInterlocked polygons
problem as a
generalization of such
puzzles.




Interlocked Polygons

e Suppose we have a set of
n non-overlapping simple
polygons.

 The polygons are
interlocked if no subset can
be separated arbitrarily far
from the rest.

- (l.e. separated using
translations/rotations
which do not cause
polygons to overlap)

« Example here.
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Interlocked Polygons

 The new puzzle they

introduce is the exploding

sliding block puzzle. : 55!

» Such a puzzle asks if all 7 —— -Lﬁ
polygons of a given 54 Lﬂ E ﬁ
collection of polygons can e
be free. 1%#' b|§|||jE|-b;

E




Interlocked Polygons

 |f one allows removing
polygons from the set, an
interlocked set of polygons
can become free.

« Removing polygons from
the set cannot cause a free
set to become interlocked.

* They use these properties
to reduce solving a
monotone boolean function
to the interlocked polygon
problem.



Hardness Reduction

@ The authors want to say something about the hardness of this
new problem.

Exploding
Sliding Block
Puzzle

Hard?

Notes on Reductions



Hardness Reduction

@ The authors want to say something about the hardness of this
new problem.

@ Similar to the lowerbound proofs they are going to reduce
solving a known hard problem to solving this problem.

Exploding
Sliding Block
Puzzle

Hard?

Notes on Reductions



Hardness Reduction

@ The authors want to say something about the hardness of this
new problem.

@ Similar to the lowerbound proofs they are going to reduce
solving a known hard problem to solving this problem.

@ We begin by considering reducing from an easy problem which
is related to the problem they will eventually reduce to solving
the Exploding Sliding Block Problem.

N

Satisfied Exploding
Monotone Sliding Block
Boolean Formula Puzzle

Hard?

Notes on Reductions



Satisfied Monotone Boolean Formula

@ You are given a Monotone (01 Aa) v 23) A (21 V 5)
Boolean Formula and a set of
assignments for the variables.

@ (Monotone indicates that
variables only appear as positive
literals in the formula)

@ This is a Satisfied Monotone
Boolean Formula if the formula
evaluates to TRUE for the given
assignments of the variables.

Notes on Reductions
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Satisfied Monotone Boolean Formula

@ You are given a Monotone EAEn YRR CRER)
Boolean Formula and a set of TITIT T
. f h . bl T|T|F T
assignments for the variables. e s
e (Monotone indicates that reE "
) . FlT|T T
variables only appear as positive FlT|F F
literals in the formula) FIFT T
F|F|F F

@ This is a Satisfied Monotone
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Monotone Boolean Functions

« What is a Monotone
Boolean Function? A

- All variables appear as
positive literals.

- (Only ANDs and ORs
allowed.)

« Thus, a variable being
assigned as true cannot
cause the function to

become false.
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Reduction Gadgets: Frame

All of the gadgets are
constructed in a frame.

This frame ensures that g

the set of polygons can be b L E

separated iff the polygon A gadget

can be moved left. P . C
@

The variables of f appear
as polygons on the left P D
hand side of the frame.

Removing them
corresponds to setting
them to true.



Reduction Graph

(1 Aa2) Vag) A(xy V as)
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Reduction Graph

((]71 A .’L’Q) vV .”113) A (171 \ /L‘;;)

OR
$1\/172

OR AND
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Reduction Gadgets: Frame

All of the gadgets are
constructed in a frame.

This frame ensures that = ..
the set of polygons can be

.
separated iff the polygon A

can be moved left. E

The variables of fappear =~ = 7%
as polygons on the left -

hand side of the frame.

Removing them
corresponds to setting
them to true.



Reduction Gadgets: And/Split

AND

SPLIT
WIRE block

.
"

 The And and Split gadgets
are mirrors of each other.



Reduction Gadgets: Or




Reduction Gadgets: Turn

Output

' TURN

TURN
Input



Reduction Gadgets: Crossover

CROSS

* Note that for all of these gadgets the operations
are reversible. (i.e. can be undone)



Reduction Gadgets

Figure 8. A construction for f (). x5, 73) = ((x1 A xa) V a3) A (] Vv x3).
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True Quantified Boolean Formulas

@ True Quantified Boolean VayJoaVas ¢ (o0 A ) V as) A (21 V 23)
Formulas contain universal and
existential quantification instead
of having a fixed assignment of
the variables.
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True Quantified Boolean Formulas

@ True Quantified Boolean Vay JoaVars ¢ (@ A ) V a5) A (21 V 23)
Formulas contain universal and (e nes) VT“WM"’”
existential quantification instead
of having a fixed assignment of
the variables.
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True Quantified Boolean Formulas

@ True Quantified Boolean Vi JeaViry : (e Aeg) V ag) A (@1 V 2)
Formulas contain universal and (CeaAa) Vi) 1 Vi)
existential quantification instead
of having a fixed assignment of
the variables.

e
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((Xl AN X2) V X3) VAN (X1 V X3)
evaluates to FALSE.
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Hardness Reduction

@ On last wrinkle.

@ They reduce from a True Quantified Boolean Formulas to a
problem, NCL, which they then reduce to the Exploding
Sliding Block Problem.

N [N

True Quantified Nondeterministic Exploding
Boolean Constraint Logic Sliding Block
Formulas (NCL) Puzzle

PSPACE-complete PSPACE-complete Hard?

Notes on Reductions



Monotone Boolean Functions

» This completes the reduction.

- Interesting gadgets but is this problem at all hard?

- This reduction may suggest that the exploding sliding
block puzzle is easy.
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Monotone Boolean Functions

» This completes the reduction.

- Interesting gadgets but is this problem at all hard?

- This reduction may suggest that the exploding sliding
block puzzle is easy.

« The authors go on to show that the exploding sliding block
puzzle is PSPACE-complete.

- Really?
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PSPACE-Complete?

« PSPACE is the class of
problems which can be EXPSPACE
decided in polynomial
space.

* NP is contained in it (may
not be strict).

* Intuitively, PSPACE-
complete problems are
harder than NP-complete
problems.




PSPACE-Complete?

* The details of the
PSPACE-Completeness EXPSPACE
proof are largely absent EXPTIME
from this paper.

 The authors reduce from a
problem called
Nondeterministic
Constraint Logic (NCL).

» We give a quick overview
of this problem next and
examine why it is hard to
solve.
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Nondeterministic Constraint Logic

e |dea:

Given a directed graph.
Each vertex has a weight requirement it must meet.

Each edge has a weight that it contributes to one of the two vertices it's
adjacent to.

The direction of the edge determines which vertex gets the weight.

The direction of edges can be flipped if the weight requirement is still
met on its vertices after the flip.

e« Goal:

Decide if a given edge e in the graph can be flipped.

(through a sequence of valid flips of other edges)



Nondeterministic Constraint Logic

» They further restrict this
such that:

- each vertex has a C
weight requirement of 2.

- each edge has weight 1
or 2 (red or blue
respectively).

» The structure to the right
behaves similar to an
AND.




Nondeterministic Constraint Logic

» They further restrict this
such that:

- each vertex has a C
weight requirement of 2.

- each edge has weight 1
or 2 (red or blue
respectively).

* The structure to the right
behaves similar to an OR.




Nondeterministic Constraint Logic

uuuuuu

input 2 input 1 hput 2

(b) OR' zadzet

* Naturally these can be more complex with many vertices.



 Next we introduce this

Nondeterministic Constraint Logic

* They want to show that
NCL is PSPACE-complete

* To show this they reduce
from True Quantified
Boolean Formulas (TQBF).

problem.




Nondeterministic Constraint Logic

* They want to show that
NCL is PSPACE-complete

* To show this they reduce
from True Quantified
Boolean Formulas (TQBF).

« Next we introduce this
problem.
« (note: this only gives the hardness

result but the other half of the
completeness proof is trivial)




True Quantified Boolean Formulas
(TQBF)

« Deciding if a fully quantified boolean formula is true is
PSPACE-complete.

* This serves as the canonical complete problem for
PSPACE.

« TQBF ={ <F>: Fis a true fully quantified boolean
formula }

VedyVw - --dz[(zVy)A---A(ZVaxVw)



TQBF to NCL Reduction

« To do this they create gadgets which emulate existential and
universal quantification.

« This is possible do to the reversible nature of computations
using NCL.

VedyVw---Jz[(zVy)A---A(ZV VW)

|

CNF logic

try in bry aut
YV Jy | Vw | - dz | ‘
satisfied out satisf

Figure 5-4: Schematic of the reduction from Quantified Boolean Formulas to NCL.
—



TQBF to NCL Reduction

try in | try out
L i

satisfied cut satisfied in
L]

(a) Existential quantifier

try in try out

satisfied out satisfied In

(b) Universal quantifier



AND/OR NCL Variant

 Interestingly they can show that all of their gadgets can be
built using only the simple AND and OR gadgets.

» Thus interest in problems which simulate monotone
boolean functions.

* These problems only need to emulate these two AND and
OR gadgets to reduce to NCL.

C C

AN N



Summary of Proof

« Exploding Sliding Block Puzzle

¢

 AND/OR NCL

¢

« TQBF



Variants of Interlocked Polygons

« Using the AND/OR NCL
reduction one can prove
PSPACE-Completeness
for even simpler variants of
the Exploding Sliding
Block Puzzle.

* In particular the authors
can show that the problem
Is hard even when all
blocks are rectangles
except one.




Variants of Interlocked Polygons

4t
4t




Variants of Interlocked Polygons

B

(a) AND (b) Protected OR



Conclusions

* Deciding if polygons are interlocked yields a
surprisingly difficult problem.

* The framework for proving PSPACE-
completeness with NCL is impressively simple.

 NCL was used to show many such simple
games are PSPACE-complete. So many that |
couldn't even begin to cover them or all the
various extensions to NCL.



Thank You! Questions?

Figure 8. A construction for f(r;, ro, r3) = ({z1 A xa) V z3) A (11 V 735).
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(b) Protected OR




NCL Cross




NCL Latch

A A A
L L L
C C + C
B B B
" m—

(a) Locked, A active  (b) Unlocked, A active (c) Unlocked, B active  (d) Locked, B active

Figure 5-6: Latch gadget, transitioning from state A to state B.



