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INTRODUCTION

The biological function of a protein essentially relies on

its interactions with solvent and other biomolecules.

Chemical and structural diversity observed at molecular

surfaces allow for the wide variety of interactions necessary

for cellular life. To decipher biological processes, it is thus

crucial to accurately define the nature and shape of these

surfaces. The determination of the surface in terms of

atoms, residues, and surface patches has already allowed to

conduct numerous studies in the protein–protein interac-

tion fields1–3 as well as to develop several prediction algo-

rithms for the detection of binding sites and the modeling

of complexes.4–7 More detailed characterization of the

surface in terms of clefts and knobs (respectively concav-

ities and convexities) was also used for the study of inter-

face complementarity and docking of molecules.8–11

Amongst the methodologies used for the description of

the surface of a molecule, the alpha shape theory12 is

probably one of the most promising. The alpha shape

model of a molecule is a polyhedral representation that

uniquely decomposes the space occupied by its atoms and

retains interesting characteristics such as the shape of the

molecule and a notion of interatom neighborhood. De-

spite the relative complexity of the theory, alpha shapes

have been used to address a wide variety of problems in

structural biology, such as the computation of protein sur-

face and volume13 as well as their derivatives,14 the detec-

tion of pockets in known structures,15–17 the construc-

tion of molecular surface meshes,18,19 the validation of

structures,20,21 or the study of interfaces.22,23

Additional Supporting Information may be found in the online version of this

article.

Grant sponsors: The Centre National de la Recherche Scientifique (CNRS), the
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ABSTRACT

The alpha shape of a molecule is a geometrical representation

that provides a unique surface decomposition and a means to

filter atomic contacts. We used it to revisit and unify the defi-

nition and computation of surface residues, contiguous

patches, and curvature. These descriptors are evaluated and

compared with former approaches on 85 proteins for which

both bound and unbound forms are available. Based on the

local density of interactions, the detection of surface residues

shows a sensibility of 98%, whereas preserving a well-formed

protein core. A novel conception of surface patch is defined

by traveling along the surface from a central residue or atom.

By construction, all surface patches are contiguous and, there-

fore, allows to cope with common problems of wrong and

nonselection of neighbors. In the case of protein-binding site

prediction, this new definition has improved the signal-to-

noise ratio by 2.6 times compared with a widely used

approach. With most common approaches, the computation

of surface curvature can be locally biased by the presence of

subsurface cavities and local variations of atomic densities. A

novel notion of surface curvature is specifically developed to

avoid such bias and is parametrizable to emphasize either

local or global features. It defines a molecular landscape com-

posed on average of 38% knobs and 62% clefts where interact-

ing residues (IR) are 30% more frequent in knobs. A statisti-

cal analysis shows that residues in knobs are more charged,

less hydrophobic and less aromatic than residues in clefts. IR

in knobs are, however, much more hydrophobic and aromatic

and less charged than noninteracting residues (non-IR) in

knobs. Furthermore, IR are shown to be more accessible than

non-IR both in clefts and knobs. The use of the alpha shape

as a unifying framework allows for formal definitions, and

fast and robust computations desirable in large-scale projects.

This swiftness is not achieved to the detriment of quality, as

proven by valid improvements compared with former

approaches. In addition, our approach is general enough to be

applied on nucleic acids and any other biomolecules.

Proteins 2009; 76:1–12.
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In this article, the alpha shape theory is used as a uni-

fying framework to compute various properties depicting

the surface of a biomolecule. The definition of surface

atoms is straightforwardly provided by the alpha shape

model. For the definition of surface residues a novel

notion is introduced, the valence Vr representing the den-

sity of surface interactions around an accessible residue.

By radiating on the surface around a surface residue, we

give a novel and intuitive definition of contiguous surface

patches. Curvature computations based on solid angle

approaches8,24 usually do not differentiate the empty

space due to subsurface cavities from the empty space

above the surface; as a result they detect more protru-

sions than they should. To tackle this problem, we define

the exposure of an atom as a modified solid angle com-

puted locally above the alpha shape surface. This expo-

sure is then smoothed in a surrounding region to define

its local surface curvature. Based on this latest notion,

clefts and knobs are detected on the surface and charac-

terized in terms of accessibility and composition.

The biological relevance of these definitions is vali-

dated on a dataset of 85 proteins involved in transient

heterodimeric interactions for which both the bound and

unbound forms are available. We consider a protein

chain to be in an unbound form if it participates only to

crystal packing contacts.25 As some conformational

changes can occur during an assembly formation, it has

been proposed to predict protein-binding sites using only

these unbound forms.5 In our dataset where small con-

formational changes are observed, we verified that most

of the interacting residues (IR) seen in bound forms are

also found on the surface in their respective unbound

forms. In the context of protein-binding site analysis, we

show that our surface patches have a better overlap with

known binding sites and a better signal-to-noise ratio

than the commonly used approach of Jones and Thorn-

ton.26 In addition, our conception of local surface curva-

ture correlates well with visual inspection and is

compared with a former approach.24 It allows a fast

detection of clefts and knobs, dividing the surface in

38% knobs, the remaining being clefts. Knob residues are

found to interact 30% more with partner proteins than

cleft residues. IR are also shown to be, respectively, 15

and 18% more accessible than noninteracting residues

(non-IR) in knobs and clefts. A more detailed analysis of

these accessibilities reveal that hydrophobic and aromatic

IR have 54% more accessibility in clefts than in knobs

with respect to non-IR. The IR in knobs are indeed

found to be more charged and less hydrophobic and less

aromatic than those in clefts.

Our implementations benefit from fast and robust

algorithms recently developed in Computational Geome-

try and provided by the CGAL library.27 The geometric

representation of alpha shapes combined with our geo-

metric descriptors is generic and applicable to any molec-

ular structure such as proteins, nucleic acids, or lipids.

Furthermore, these tools are fast enough for use in large-

scale projects such as interactomics.

METHODS

Alpha shapes

As depicted in Figure 1(A), molecules are generally

described as a union of balls representing either van der

Waals (VdW) or solvent accessible (SA) models.28

Another common model is provided by the molecular

surface,29 defined as the limit of space around the mole-

cule that a rolling probe sphere can actually touch.

Molecules can also be modeled with their Delaunay

complex30 [Fig. 1(B)] which is a unique partition of the

three-dimensional (3D) space in nonoverlapping tetrahe-

dra whose vertices are atom centers. This construction

bears information on the atom neighborhood: a Delau-

nay edge links the two nearest atoms in the direction of

that edge. Such edges can be arbitrarily long, covering

for instance a surface cavity [Fig. 1(C)], segment [ab]).

By trimming the ‘‘largest’’ Delaunay edges, triangles, and

tetrahedra, it is possible to distinguish between the voids

surrounding the molecule and the actual molecular

object [Fig. 1(C), gray colored triangles]. This task is

achieved through the alpha complex,12 a filtration of

Delaunay edges, facets, and tetrahedra based on the

growth of soft balls virtually placed on all atom centers

of the molecule. The size of these so called a-balls

increases with alpha, and the alpha complex registers

contacts between alpha balls: when two (respectively

three or four) alpha balls touch each other, the corre-

sponding Delaunay edge (respectively facet or tetrahe-

dron) belongs to the alpha complex for this specific

alpha value. In the present study we restrict our use to

an alpha parameter of 0 [Fig. 1(C)]. This particular con-

struction (also referred as the dual complex in the litera-

ture) corresponds to the case, where the radius of a ball

modeling an atom measure the van der Waals radius of

this atom raised by a probe sphere radius (generally 1.4

Å corresponding to a water molecule). In the following

descriptions and discussions, we will assume a value of 0

for every occurrence of alpha. As demonstrated by Edels-

brunner31 this construction is a unique and precise

representation of the molecule.

The alpha shape (with alpha equal to 0, also known

as dual shape) of a molecule is the border of its alpha

complex [Fig. 1(C), bold segments]. It is a polyhedron

with triangular facets that precisely depicts the surface

of a molecule (see Fig. 2). A facet in the alpha shape

links a triplet of surface atoms blocking a probe sphere,

whereas an edge links two atoms that allow the same

probe sphere to roll from one blocking position to

another. The vertices of the alpha shape are exactly the

atoms with a strictly positive accessible surface area

(ASA > 0 Å).

L.-P. Albou et al.
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The surface of the alpha shape may present ambigu-

ities (nonmanifoldness) in cases where an atom (vertex)

is shared by two sides of the surface [Fig. 1(D)]. Ambig-

uous vertices, edges and triangles are virtually split to

prohibit surface crossing of facets [Fig. 1(E)]. The result-

ing surface is stored in a half-edge data structure. Ulti-

Figure 2
Alpha shape and a surface patch. Alpha shape of the protein RAR a (1dkfB) in purple. In blue, a contiguous surface patch generated by our

approach. For better visualization, the right part of the figure presents a focus on the surface patch.

Figure 1
Molecular surface representations. (A) 2D example of van der Waals (VdW) representation of the molecule modeled as a union of balls with VdW

radii. By rolling a probe sphere on the VdW surface one defines the surface accessible (SA) and Molecular Surface (MS) models. (B) In 2D, the

Delaunay complex of a molecule (here represented in its SA model) is composed of straight lines between atom centers and the triangles they

delineate. In 3D this ‘‘triangulation’’ contains also tetrahedra. (C) The molecule’s 0-balls (matching the atoms in their SA representation) have been

represented and their contacts emphasized by thin straight lines separating them. The alpha complex (a 5 0) comprises all Delaunay edges except the

three dotted ones (for instance, the edge between vertices a and b is stripped because the corresponding grayed balls do not touch each other). For

similar reasons three Delaunay triangles are stripped and only the seven grayed triangles belong to the alpha complex. The alpha shape is the border of

the alpha complex, it is pictured here with bold edges. (D) A case of 3D surface ambiguity, for clarity the upper facets are depicted transparent.

Traveling on the surface from vertex a to b with edges f and g allows one to cross the upper facets through vertex v. (E) To forbid such surface

crossings, v is split in two, as well as the transparent facets and its two basis edges. Traveling from a to b now necessitates to visit edges e1 and e2.

Protein Surface Using Alpha Shapes
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mately, the vertices and edges of this modified alpha

shape provide a graph depicting the neighborhood of atoms

on the protein surface. Only atoms that share a surface

intersection in the SA model will be connected by an

edge in this graph. A graph of surface residue neighbors is

also constructed by connecting residues that share at least

one edge in their atom neighborhood graph.

To compute alpha shapes, we rely on the library

CGAL,24 and use as parameters an alpha value of 0, a

probe sphere radius of 1.4 Å, and common van der

Waals radius for atoms. For a deeper insight into the

alpha shape theory and for its relationship with molecu-

lar models please refer to other articles from Edelsbrun-

ner and Mucke12 and Edelsbrunner.31 An introduction

to these models is also provided by A. Poupon.32

Dataset of bound and unbound
protein structures

To evaluate our surface descriptors, we have built a

dataset of 85 proteins for which the structures of both

their bound and unbound forms are available. Bound

forms correspond to the structure of the protein

extracted from the structure of an assembly, whereas the

unbound forms correspond to the structure of the pro-

tein that participates only to crystal contacts.25 Each of

these proteins is involved in transient heterodimers (fol-

lowing the definition of Nooren and Thornton33), and

therefore both the bound and unbound forms have a

biological meaning.

As a first step, structures of protein assemblies with re-

solution better than 3 Å are extracted both from the Pro-

tein Data Bank (PDB)34 and already published datasets.3

Then, a non-redundant dataset of 225 transient hetero-

dimers is built with a maximum sequence identity of

30%. Antigen-Antibody structures and assemblies with

fragmented proteins are also removed. The Average

length of protein chains is 240 amino acids and no pro-

tein chains have less than 50 amino acids or more than

576 amino acids.

The transient state is inferred in silico by checking in

the PDB if known IR detected in a structure assembly

are found to interact with at least one different partner

in another assembly. However, these contacts may result

from crystal packing and therefore do not necessarily

occur in vivo. For this reason, all our assemblies and

their transient aspects have been manually verified by

consulting experiments described in the literature.

The unbound forms are then retrieved using the fol-

lowing approaches:

(a) Protein structures that are described as monomers in

PISA35 are retrieved.

(b) Each protein chain is compared with the monomers of

PISA, using BLAST.36 To lower the occurrence of con-

formational changes due to key mutations and empha-

size only those due to the assembly formation, only

structural candidates with at least 95% residue identity

over 95% of the sequence length are retrieved.

(c). If several unbound structures remain, the one with

the best resolution and b-factor is selected.

As a result of this process, 85 proteins are obtained for

which both their bound and unbound forms are available

(Supp. Info. Table I).

IR are then detected on bound forms by a change of

accessibility of at least 1 Å2 during the assembly forma-

tion.3 The ASA values of atoms and residues are com-

puted using the Naccess program37 with default parame-

ters. IR are then mapped on the corresponding unbound

forms, using a pairwise alignment.

Surface residues

A surface atom is defined as an accessible atom (ASA >
0 Å2). As previously stated, accessible atoms correspond

exactly to the vertices of the alpha shape. The valence Va

of an accessible atom is defined as the number of its ac-

cessible atom neighbors (the number of its edge con-

nected atoms in the alpha shape). The valence Vr of an

accessible residue (ASA > 0 Å2) is defined as the number

of edges connecting atoms from that residue to atoms of

other accessible residues. An accessible residue is then

considered as a surface residue by combining its number

of surface atoms Nr, and its valence Vr (see ‘‘Results and

Discussion’’ section).

In the approach of Miller et al.,38 surface residues are

defined as those having an observed ASA of at least 5%

of their reference ASA. The reference ASA of a residue X

is the ASA of the residue in a polypeptide extended-state

Gly-X-Gly.

More recently Chakravarty et al.,39 have proposed a

novel way of defining surface residues by computing a

notion of depth for every atom and residue of a protein

structure. To compare this approach with ours, we imple-

mented this notion of depth using the surface atoms as

reference, as proposed by Pintar et al.40

To optimize our definition of surface residues, a measure

of sensitivity is assessed by considering the fraction of

known IR that are described as being part of the surface in

bound forms. Residues that are not described as surface

residues are considered part of the protein core. A measure

of specificity is then evaluated by keeping trace of the frac-

tion of amino acids that constitutes the protein core.

We perform an optimization of our surface residue

detection by varying simultaneously Nr and Vr. During

this optimization, the best definition of surface residues

is attained when almost all IR are detected as being sur-

face residues, whereas the protein core contains the big-

gest fraction of amino acids. For comparisons with the

Miller et al.38 and Pintar et al.40 approaches, we vary

respectively the percentage of accessibility and the thresh-

L.-P. Albou et al.
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old of depth used to detect surface residues and evaluate

the fraction of core residues.

Surface patches

Two kinds of surface patches are generally considered

in the literature: surface patches of variable size that cor-

respond to subregions of an interface assembly3 and sur-

face patches of a given size that are generated evenly over

the surface of a single protein.26 Although the first

approach is aimed at better characterizing a known inter-

face, the second approach is commonly used to average

properties on a specific region to predict a biologically

relevant fact such as protein or nucleic acid binding sites.

We focus on this second definition.

To construct an atom surface patch around a surface

atom, we gather the nearest surface atoms that are reach-

able over a continuous surface from that center (see Fig.

2). This is achieved by computing minimal distances

from the central atom to every other atom in the graph

of surface atoms introduced in the Alpha shapes section.

This computation relies on the Dijsktra shortest distance

path algorithm41 where edges linking two surface atoms

are weighted according to the euclidian distance separat-

ing them. Essentially, the distance over the surface com-

puted for any two atoms is the sum of the edge lengths

forming the shortest path between these two atoms.

Residue surface patches are computed in the same way

and the weight of an edge linking two accessible residues

correspond to the minimal euclidian distance between

any of their atoms. This is achieved by assigning a dis-

tance of 0 to each atom of the central residue in the

Dijsktra algorithm.

By construction, our surface patches are edge con-

nected. This means that any atom of the patch is reach-

able from any other atom of the patch through a list of

atomic intersections over the surface. In the following

evaluation, this property has been chosen for the study

of surface patch contiguity.

In the commonly used definition of surface patches of

Jones and Thornton in 1997,26 surface residues are char-

acterized by their Ca and a solvent vector pointing to-

ward the solvent. To select only surface residues that are

on the same side of the surface, surface residues are

added to the patch if the angle between their solvent vec-

tors and the solvent vector of the central residue is less

than 1108.
Every surface patch of 20 residues5,7 was generated

over the surface of every protein of our dataset of bound

forms with both approaches. These surface patches are

mapped into sub-graphs, taking as reference our graph of

surface atoms. Then, several measures are analyzed:

1. For each protein chain, the maximum overlap (in

terms of residues) between the known binding site

and any of the surface patches.

2. The number of contiguous subregions that compose a

surface patch, that is the number of connex compo-

sants of the surface patch graph. By construction, our

surface patches always define a unique region.

To further understand the differences observed

between these approaches, we evaluated the number of

surface atoms and residues, that are contiguous to a cen-

tral surface residue in our method and that are not pres-

ent in the corresponding patch obtained by the former

approach.

For the prediction of protein-binding sites, where the

interacting potential of a residue is determined by the

analysis of properties in the surrounding region, it is nec-

essary to generate automatically the surface patch that

will best overlap with a binding site while having the

lowest number of non-IR. This problem consists in find-

ing the patch size N that will optimize the signal-to-noise

ratio Q [Eq. (1)].

QðP;NÞ ¼
OðP;NÞ

NIRðP;NÞ
ð1Þ

O(P,N) is the best observed percentage of overlap between

a surface patch of size N (expressed in terms of number

of atoms, number of residues or distance) and the known

binding site of the protein P. NIR(P,N) is the percentage

of non-IR inside that patch.

Surface curvature

The relative exposure X of a surface atom a is defined

as the fraction of a tiny sphere centered on a, that lies

outside the alpha shape. In the present two-dimensional

(2D) example [Fig. 3(A)], this value corresponds to the

sum of normalized angles x1, x2, x3 of « empty » Delau-

nay triangles at atom a. In 3D this generalizes to a sum

of tetrahedra solid angles [Fig. 3(B)]. To better differenti-

ate the values corresponding to clefts and knobs, X was

normalized to define values ranging from 21 (cleft) to 1

(knob), with 0 defining a flat region. The relative expo-

sure of a residue is defined as the mean of its atom expo-

sures and as such, follows the same rules of normaliza-

tion.

In some ‘‘degenerate’’ cases, the surface of an atom

might be scattered in disconnected atomic components

as illustrated in the 2D example [Fig. 3(C)]. The initial

split of vertices in the alpha shape (presented in ‘‘Mate-

rial and Methods’’ section) allows us to maintain a dis-

tinct value for each atomic component. A per atom value

is obtained by summing up all component of the atom

with the exception of cavities [Fig. 3(C), b2].

To define the local surface curvature for an atom, rela-

tive exposures are smoothed on a surrounding concen-

tric region. Starting from a central atom, a smoothing

region is determined by considering all surface atoms

Protein Surface Using Alpha Shapes
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accessible through a maximum of s edges, where s is a

size parameter.

To emphasize local features, more importance is given

to atoms near the patch center than to remote ones:

CðaÞ ¼
X

i2surfacepatch

XðiÞ
dða; iÞ ð2Þ

where C(a) is the local surface curvature of atom a,

d(a,i) is the distance over the surface (in the graph)

between atom a and atom i, and X(i) is the relative ex-

posure of atom i. The local surface curvature of a residue

is computed as the mean of its atom values.

To validate our definition of local surface curvature,

we compared our values with those computed by the CX

program,27 an approach similar to common solid angle

approaches.8–11 To assess the curvature, CX approxi-

mates the amount of space filled by atoms within a

sphere of 10 Å. We further used our definition of local

surface curvature to define clefts and knobs over the sur-

face and characterized them in terms of accessibility and

composition.

RESULTS AND DISCUSSION

Defining the protein surface

Surface residues

Following the definition of sensitivity and specificity

proposed in ‘‘Material and Methods’’ section, the best

definition of a surface residue is found to be an accessi-

ble residue that either possesses five surface atoms or has

a valence Vr higher than 10. With these parameters, 98%

of the IR were detected as being part of the surface,

whereas 20% of the residues were assigned to the protein

core (see Fig. 4).

Similar results are observed for the approach of Miller

et al.38 with the default parameter of 5% accessibility,

leading to the detection of 96% of IR as being part of

the surface, while keeping a protein core formed on aver-

age of 24% of the residues.

The best result that could be achieved with the residue

depth approach40 was obtained with a depth of 2.3 Å.

Although 98% of IR are detected as part of the surface,

the protein core is less well defined with only 15% of the

residues. Other depth-based approaches that use water

molecules as surface referents might perform better, but

are far more time consuming due to the placement of

these referents either by Molecular Dynamics or Monte

Carlo approaches.

We confirm the good distinction between protein

surface and core by analyzing several physicochemical

properties known to differentiate these two structurally

different regions: the hydrophobicity and flexibility are

computed with the amino acid scales of Argos (1982)

and Creamer (2000), and the amino acid conservation is

computed as a Shannon Entropy42 derived from a multi-

ple alignment generated by PipeAlign.43 These three

approaches that divide residues into surface and protein

core emphasize the same differences in physicochemical

and evolutive properties: the protein surface is on average

(1) 40% less hydrophobic, (2) 65% more flexible, and

(3) 75% less conserved than the protein core (Supp. Info.

Table II).

Our approach to define surface residues is comparable

with the one of Miller et al.,38 which is widely used to

differentiate protein surface and core. This suggests the

importance of a novel parameter introduced in this

study, the valence Vr, which represents the density of

interactions at the surface. Interestingly, IR are detected

as being part of the surface equivalently in both bound

and unbound forms (data not shown). This remark fur-

ther supports the possibility to predict protein-binding

Figure 3
Relative exposure. (A) In 2D the relative exposure X of vertex a corresponds to an ‘‘empty angle’’ around this vertex. It is computed as a sum x1 1

x2 1 x3 of solid angles. (B) The solid angle x at vertex a of a tetrahedron is the portion of surface area lying inside the tetrahedron of a tiny

sphere centred on a. (C) A 2D example where a vertex may have more than one component. The atom b has two components, the component b1

is on the surface of the protein and the component b2 is in a cavity. Atom c has two components, both on the surface of the protein.
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sites using unbound forms where only small or moderate

conformational changes occurred during the molecular

assembly formation.

Surface patches

All surface patches were generated on the dataset of 85

bound forms, with a patch size similar to previous studies

(N 5 20 residues).4–7 Binding sites in our dataset are

composed of 27 amino acids on average. For each protein

chain, our best overlapping surface patch contains on aver-

age 15–16 IR, corresponding to an average overlap of

62.3% with known binding sites, while retaining only four

to five (22%) non-IR. The signal-to-noise-ratio Q was thus

improved by 63.6%, ranging from 2.2 for the Jones and

Thornton approach, to 3.6 for our method (Table I).

Generating residue surface patches of 20 residues on

each surface atom rather than on each surface residue

further increases the signal-to-noise ratio to 4.9. For such

a definition, the best overlap with a known binding site

is 65.9% on average, while retaining only 17.4% of non-

IR, thus improving the signal quality by more than two

times compared with Jones and Thornton.

Finally, to obtain the best signal-to-noise ratio with

our approach, an optimization was performed by varying

the size of the patch. Experiments revealed a peak for 15

residues, with respectively Q 5 5.8 for bound forms and

Q 5 5.1 for unbound forms. With this patch size, the av-

erage best overlap of a surface patch with a binding site

is respectively 55.4% in bound forms and 55.8% in

unbound forms, while the percentage of non-IR inside

the patch represents no more than 9.3% in bound forms

and 11.8% in unbound forms. Compared with the

approach of Jones and Thornton, the use of residue sur-

face patches generated on a per atom basis combined

with a patch size of N 5 15 residues thus improved the

signal-to-noise ratio by a factor of 2.6.

Although the per atom approach generates about 10

times more patches than the per residue approach, it is

fast enough to be applied in large-scale projects thanks

to the combination of two fast computational tools :

alpha shapes and Dijkstra graph travel.

As a further refinement, our surface patches can be

extended to define core and rim patches. Further experi-

ments will be conducted to explore a potential correla-

tion between these definitions and the notions of inter-

face core and interface rim.2,3

Characterizing the protein surface

Our definition of relative exposure shares similitudes

with the ASA. This statement was verified on our dataset

Figure 4
Selection of parameters to define surface residues. The distribution of Nr values for both Interface and All residues is shown. To detect most of the

interface as being part of the surface, it seems reasonable to select an Nr superior or equals to 2 if the parameter is used alone. For Vr distribution,

a threshold of 10 or 11 can be chosen to detect by itself most of the interface. Finally, the plot of Nr/Vr leads to select Nr 5 5 and Vr 5 10 to

detect more than 98% of the interface as being part of the protein surface.

Table I
Comparisons of the Best Overlapping Patches with Binding Sites

Alpha-shapea Alpha-shapeb Jones and Thornton

Maximum overlap (O(P,N)) 62.3% 65.9% 56%
Fraction of non interacting residues (NIR(P,N)) 22% 17.4% 25.5%
Signal-to-noise (Q(P,N)) 3.6 4.9 2.2
Number of missed contiguous atoms1 — — 18
Number of missed contiguous residues1 — — 3.9
Number of subregions selected per patch1 — — 1.5

Surface patches are generated using a size parameter of 20 residues on the dataset of bound forms. Values of missed atoms and

residues as well as the number of subregions are not applicable to our approach.

Values for parameters noted with a (1) have not been computed for a and b as alpha shape is taken as reference.
aResidue surface patches generated for each surface residues.
bResidue surface patches generated for all surface atoms.
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by a strong Pearson product-moment correlation coeffi-

cient between these two notions (respectively 0.86 for

atoms and 0.89 for residues).

Like the ASA values, the relative exposure values are

subject to great variations in the neighborhood of an

atom. This property is explicitly depicted by the lacunary

nature of the alpha shape surface. To reflect a local trend

of the surface around an atom, we introduced the notion

of local surface curvature by smoothing the relative expo-

sures in the atom neighborhood. The size of the smooth-

ing region is a critical parameter used to define the level

of details to be observed on the surface. When this

smoothing region is small, the accent is placed on local

details, whereas when it is larger global features are

emphasized. A visual inspection was performed and a

reasonable balance between local and global surface fea-

tures was achieved for a size of smoothing region s 5 2

[Fig. 5(B)].

Several approaches have already been proposed to

address the determination of protein surface curvature.

Because of the intuitiveness of this notion, no quantita-

tive evaluation exists to differentiate poor and good

approaches. Nevertheless, we compared our results with

CX,27 an existing method similar to common solid angle

approaches.8–11 In both cases, curvature values were

computed for all surface atoms and only a moderate cor-

relation (0.64) was observed. For a more detailed under-

standing of this low correlation, we proceeded to a quan-

titative comparison to verify if both approaches were able

to detect the same protruding regions. Considering the

10% of atoms with higher values, an overlap of 66% is

observed between both approaches. The main differences

were observed for regions detected either as flat (near 0)

or cleft (near 21) by our local surface curvature score.

This low overlap can be explained by the difference in

methodology behind the two approaches. CX being based

on local atomic densities can be biased by the presence

of subsurface cavities, a problem common to most solid

angle approaches.8–11 In the extreme case, when influ-

enced by local variations of densities or by the presence

of cavities, even clefts can be detected as protruding [Fig.

5(A)]. In contrast, our method allows to distinguish

between the empty space above and below the surface

and only considers the empty space above the surface to

reflect the real local curvature.

To study the protein surface topography, we defined

knob residues as surface residues with a local surface cur-

vature greater than 0, and cleft residues as those with a

local surface curvature smaller than 0. Following this def-

inition the surface is composed on average of 62% of

clefts and 38% of knobs. Furthermore, knob IR contrib-

utes to 6.7% of the surface of the protein whereas cleft

IR contribute to 8.6% of this surface. Therefore, the

bayesian probability of having an interacting residue in a

knob is 0.174 and 0.139 in a cleft. IR are thus 30% more

frequent in knobs than in clefts, a result that correlates

with the fact that IR are known to be, on average, rela-

tively accessible (Table II).

To further understand the differences between cleft

and knob regions, we proceeded to a detailed analysis of

Figure 5
Protein structure of Cytochrome P450 (1eup:A) visualized with PyMol.44 CX values are represented in (A), our local surface curvature index in

(B). To allow comparisons between (A) and (B), values have been normalized using 90% of all atomic values and using a threshold of 1 to

differentiate between knobs and clefts for CX values and 0 for our solid angle approach. Blue indicates clefts (values near 21), green indicates flat
surfaces (values near 0) and red indicates knobs (values near 1). The cavity of 855 Å3 (SA model) below the ellipsoid region increases the global

amount of empty space and bias the curvature of CX toward the detection of flat and knob regions.
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amino acid accessibility and composition for both non-

IR and IR. First, our scale of amino acid contribution to

the surface area (Table IIb: Surface: All) shows a strong

correlation of 0.97 with a previously published amino

acid scale3; a strong correlation of 0.9 for the composi-

tion of IR was also observed. Then this amino acid con-

tribution to the surface area was decomposed into knob

surface area and cleft surface area. Phe, Tyr, and Trp con-

stitute the aromatic cluster, Ala, Val, Leu, Ile, Met consti-

tute the hydrophobic cluster, Asp and Glu the anionic

cluster and Lys, Arg the cationic cluster. Whereas knob

surfaces are composed of only 4.5% aromatics and 13.9%

hydrophobic residues, cleft surfaces are composed on av-

erage of twice as many aromatics (10.7%) and hydropho-

bic residues (24.5%). For interacting surfaces, aromatics

represent 13.2% of knob regions (compared with 4.5%

for noninteracting surfaces) and 17.5% of cleft regions

(compared with 10.6%). These interacting surfaces show

also more hydrophobic residues than noninteracting sur-

faces, in particular for knobs (20.5% of the surface area

versus 13.9% for noninteracting surfaces) and somewhat

less for clefts that are already very hydrophobic (27.3%

against 24.5%). Furthermore, cationic and anionic resi-

dues are shown to be more present in knob than in cleft

regions for both IR and non-IR, although knob IR are

less anionic (12.5%) than knob non-IR (20.2%). Cleft

non-IR are also shown to be more charged (30.8% for

both anionic and cationic residues) than cleft IR

(24.3%).

To conclude, knob regions are shown to be more

charged, less hydrophobic and less aromatic than cleft

regions. Furthermore, greater differences of surface con-

tribution are seen between knob IR and knob non-IR

than for cleft IR and cleft non-IR. Knob IR resemble cleft

non-IR and are shown to be less charged, more hydro-

phobic and more aromatic than knob non-IR. It is,

therefore, easier to distinguish knob IR from knob non-

IR than to distinguish cleft IR from cleft non-IR.

To sum up these conclusions, euclidian metrics were

computed (see Fig. 6), as proposed by Chakrabarti and

Janin,3 by computing the distance Df between two com-

positions fi and f 0i:

ðDf Þ2 ¼ 1=19
X20

i¼1

ðfi � f 0i Þ
2

Finally, this finer description of the surface should

help to improve the prediction of protein-binding sites

by allowing to compare separately knob and cleft regions.

Nucleic acids and other biomolecules

With the exception of the definition of surface resi-

dues, our approaches can be directly used to analyze and

characterize the surface of other biomolecules such as

DNA, RNA, or lipids. As defined for protein structures,

the surface atoms of these biomolecules still correspond

to the accessible atoms extracted from the alpha shape.

By construction, our local surface curvature depends only

on a continuous surface and is influenced neither by var-

iations of density nor by the presence of cavities. There-

fore, this surface descriptor can also be applied to these

biomolecules [Fig. 7(A)]. Finally, our approach also

allows for the generation of surface patches along nucleic

acid surfaces [Fig. 7(B)].

By unifying and facilitating the analysis and compari-

son of molecular surfaces, we hope that this geometrical

approach will benefit the emergent structural studies

both on current and newly characterized biomolecules.

Figure 6
Distances between amino acid compositions. Distances are those

defined in the text as Df and are expressed as percentages. The area-

based composition of each region (except for the protein core) is listed

in Table II. Area-based composition for the protein core is taken from

Lo Conte et al.2 The noninteracting surface is more distant from Cleft

IR than Knob IR, and Cleft IR are more similar to the protein core

than the noninteracting surface.

L.-P. Albou et al.
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CONCLUSIONS

In this study, alpha shapes have been used to model

and study properties of protein surfaces that are relevant

to the description of the surface and the analysis of mo-

lecular interactions. Using this framework, we were able

to define surface atoms and residues, as well as to gener-

ate contiguous surface patches. Using the field of pro-

tein-binding site prediction to evaluate the relevance of

our definitions, we achieved a significant improvement in

the determination of surface patches, where the signal-to-

noise ratio in the definition of the interacting potential

of a residue is increased by 2.6 times with respect to a

previous approach.

The alpha shape framework was further used to define

a conception of surface curvature that is biased neither

by the variation of atomic density nor by the presence of

cavities below the surface. In the characterization of the

molecular surface topography, this conception revealed a

landscape composed on average of 38% knobs (the

remaining being clefts), where IR are 30% more frequent

in knobs than in clefts. This distinction is important for

IR as demonstrated by the differences in accessibility and

composition between these two regions. These results

remain true when considering unbound forms, where

only small conformational changes occurred during the

assembly formation.

The robust geometric framework of alpha shapes has

allowed us to unify the computation of several properties

relevant to the analysis and comparison of any molecular

surfaces, with a proven improvement compared with

former approaches. Our algorithms are fast enough to be

used in large-scale projects such as interactomics, and

will be applied in the future for the analysis of protein

and nucleic acid interactions.
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