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External memory dictionary

Task: Given a large amount of data that does not
fit into main memory, process it into a dictionary
data structure

* Need to minimize number of disk accesses
* With each disk read, read a whole block of data

* Construct a balanced search tree that uses one
disk block per tree node

* Each node needs to contain more than one key
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k-ary search trees

A k-ary search tree T is defined as follows:
*For each node X of T
* X has at most K children (i.e., T is a k-ary tree)

* X stores an ordered list of pointers to its children,
and an ordered list of keys

 For every internal node: #keys = #children-1
e X fulfills the search tree property:

keys in subtree rooted at I-th child < I-th key <
keys in subtree rooted at (1+1)-st child
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Example of a 4-ary tree

o
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Example of a 4-ary search tree

10 25

6 12 15 21 30 45

3 QAR 1120 2324 427 R 40 A 50

1 16 18

11/5/12 CMPS 2200 Intro. to Algorithms 5




B-tree

A B-tree T with minimum degree k > 2 is
defined as follows:

1. Ti1s a(2k)-ary search tree

2. Every node, except the root, stores at least
k-1 keys
(every internal non-root node has at least k
children)

3. The root must store at least one key

4. All leaves have the same depth
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B-tree with k=2

10 25

6 12 15 21 30 45

3 QAR 1120 2324 427 R 40 A 50

1. T 1s a (2k)-ary search tree
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B-tree with k=2

10 25

6 12 15 21 30 45

3 QAR 1120 2324 427 R 40 A 50

2. Every node, except the root, stores at least
k-1 keys
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B-tree with k=2

10 25

6 12 15 21 30 45

3 QAR 1120 2324 427 R 40 A 50

3. The root must store at least one key
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B-tree with k=2

10 25

12 15 21

4. All leaves have the same depth
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B-tree with k=2

10 25

6 12 15 21 30 45

3 QAR 1120 2324 427 R 40 A 50

Remark: This 1s a (2,3,4)-tree.
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Height of a B-tree

Theorem: For a B-tree with minimum degree
k > 2 which stores n keys has height h holds:
h <log, (n+1)/2

Proof: #nodes > 1+2-+2k+2k?+. . .+2k"-!

/ AN
/ levell\ level 3
level 0 level 2

h-1
n = #keys > 1+(k-1)2.2ki = 1+2(k-1): % = 2kN-1
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B-tree search

B-TREE-SEARCH(X,KeY)

11/5/12

| < 1

while i<#keys of x and key > i-th key of x
do |« I+1

If I<#keys of x and key = I-th key of x
then return (x,1)

If X is a leaf
then return NIL

else b=DISK-READ(i-th child of x)
return B-TrREe-SEARCH(D,key)
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B-tree search runtime

* O(k) per node
* Path has height h = O(log, n)
* CPU-time: O(k log, n)

* Disk accesses: O(log, n)

disk accesses are more expensive than CPU time
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B-tree insert

 There are different insertion strategies. We just cover
one of them

* Make one pass down the tree:
 The goal is to insert the new key into a leaf
 Search where key should be inserted
» Only descend into non-full nodes:

e [f a node 1s full, split it. Then continue
descending.

« Splitting of the root node is the only way a B-
tree grows In height

11/5/12 CMPS 2200 Intro. to Algorithms 15



B-TREE-SPLIT-CHILD(X,1,Y)

%s 2k-1 keys |

* Split full node y into two nodes y and z of k-1 keys
fyv 1s moved up into y’s parent X

« Example below for k =4

« Median key
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Split root: B-TREE-SPLIT-CHILD(S,1,r)

 The full root node r 1s split in two.
* A new root node S 1s created

* S contains the median key
two halves of I as children

» Example below for k =4

of  and has the

root|T]

root[T]

A

y

T\ I, T3 T, Ts T T, T
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B-TREE-INSERT(T,key)

I =root| I]

If (# keys in ) = 2k-1//root r is full
//insert new root node:
s <— ALLOCATE-NODE()
root[ ] < s
// split old root r to be two children of new root s
B-TREE-SpLIT-CHILD(S, 1,I)
B-TREE-INSERT-NONFULL(S,key)

else B-TREE-INSERT-NONFULL(T,key)
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B-TREE-INSERT-NONFULL(X,key)

If X 1s a leaf then
insert key at the correct (sorted) position in X
DISK-WRITE(X)
else
find child ¢ of X which by the search tree property
should contain key
DISK-READ(C)
If ¢ 1s full then // ¢ contains 2k-1 keys
B-TREE-SPLIT-CHILD(X,1,C)
c=child of x which should contain key
B-TREE-INSERT-NONFULL(C,key)
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Insert example (k=3)

ACDE JK RSTUV||YZ
 Insert B:
L (:é» pvq\; '‘‘~.a..J:::::::::::::._______------------..b
/

ABCDE | [JK

RSTUYV

Y Z
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Insert example (k=3) -- cont.

—

ABCDE

J

K| [NO

RSTUYV

YZ

* Insert Q:

node is full

GMP T X_

ABCDE

J K

N O

QRS

UV
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Insert example (k=3) -- cont.

nodeisfull | gMmPTX_

PRI

ABCDE | |JK| [NO||ORS||uVv]| |YZ

e Insert L:

/' '\
GM TX.

/’/ \\ e ‘\\.

ABCDE [[JKL|INO||QRS||UYV Y Z
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Insert example (k=3) -- cont.

P
/ \
. G M, TX.
node Is full —1—— s i
ABCDE [|[JKL|INO||QRS||UV YZ
e Insert F:
P
/ \
CGM TX.
A//-//' . — ‘\\.
AB|DEF|JKL|[[NO||QRS||UV YZ
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Runtime of B-TREE-INSERT

* O(k) runtime per node
» Path has height h = O(log, n)
* CPU-time: O(k log, n)

* Disk accesses: O(log, n)

disk accesses are more expensive than CPU time
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Deletion of an element

» Similar to insertion, but a bit more complicated

» [f sibling nodes get not full enough, they are merged
into a single node

e Same complexity as insertion
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B-trees -- Conclusion

» B-trees are balanced 2k-ary search trees

» The degree of each node is bounded from
above and below using the parameter Kk

 All leaves are at the same height

* No rotations are needed: During insertion (or
deletion) the balance is maintained by node
splitting (or node merging)

 The tree grows (shrinks) in height only by
splitting (or merging) the root
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