
CMPS 2200 -- Fall 2012

Union-Find Data Structures
Carola Wenk

Slides courtesy of Charles Leiserson with smallSlides courtesy of Charles Leiserson with small
changes by Carola Wenk

10/29/12 CMPS 2200 Intro. to Algorithms 1

Disjoint-set data structure
(Union Find)(Union-Find)

Problem:
• Maintain a dynamic collection of pairwise-disjoint Maintain a dynamic collection of pairwise disjoint

sets S = {S1, S2, …, Sr}.
• Each set Si has one element distinguished as the

i lrepresentative element, rep[Si].
• Must support 3 operations:

• MAKE SET(x): dd t { } t S• MAKE-SET(x): adds new set {x} to S
with rep[{x}] = x (for any x ∉ Si for all i)

• UNION(x y): replaces sets S S with S ∪ S in SUNION(x, y): replaces sets Sx, Sy with Sx ∪ Sy in S
(for any x, y in distinct sets Sx, Sy)

• FIND-SET(x): returns representative rep[Sx]

10/29/12 CMPS 2200 Intro. to Algorithms 2

() p p[x]
of set Sx containing element x

Union-Find Examplep

MAKE SET(2)
S = {}
S = {{2}}

The representative is
underlined

MAKE-SET(2) S = {{2}}
MAKE-SET(3) S = {{2}, {3}}
M S (4) S {{2} {3} {4}}

U (2 4)
FIND-SET(4) = 4
MAKE-SET(4) S = {{2}, {3}, {4}}

S {{2 4} {3}}UNION(2, 4) S = {{2, 4}, {3}}
FIND-SET(4) = 2
MAKE-SET(5) S = {{2, 4}, {3}, {5}}
UNION(4, 5) S = {{2, 4, 5}, {3}}

10/29/12 CMPS 2200 Intro. to Algorithms 3

(,) {{ } { }}

Plan of attack
•We will build a simple disjoint-set data structure
th t i ti d f i ifi tlthat, in an amortized sense, performs significantly
better than Θ(log n) per op., even better than
Θ(log log n) Θ(log log log n) but not quite Θ(1)Θ(log log n), Θ(log log log n), ..., but not quite Θ(1).

•To reach this goal, we will introduce two key tricks.
E h i k i i l Θ() l i iEach trick converts a trivial Θ(n) solution into a
simple Θ(log n) amortized solution. Together, the
two tricks yield a much better solutiontwo tricks yield a much better solution.

• First trick arises in an augmented linked list.

10/29/12 CMPS 2200 Intro. to Algorithms 4

Second trick arises in a tree structure.

Augmented linked-list solutiong
Store Si = {x1, x2, …, xk} as unordered doubly linked list.
Augmentation: Each element xj also stores pointer

rep

Augmentation: Each element xj also stores pointer
rep[xj] to rep[Si] (which is the front of the list, x1).

…Si : x1 x2 xk

rep
Assume
pointer to x
is given. i x1 x2 xk

rep[Si]

• FIND SET(x) returns rep[x] Θ(1)

g

• FIND-SET(x) returns rep[x].
• UNION(x, y) concatenates lists containing

x and y and updates the rep pointers for

– Θ(1)

10/29/12 CMPS 2200 Intro. to Algorithms 5

x and y and updates the rep pointers for
all elements in the list containing y. – Θ(n)

Example of
augmented linked list solutionaugmented linked-list solution

Each element xj stores pointer rep[xj] to rep[Si].
U ()UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

rep

• updates the rep pointers for all elements in the
list containing y.

Sx : x1 x2

rep

rep
rep[Sx]

Sy : y1 y2 y3

rep

10/29/12 CMPS 2200 Intro. to Algorithms 6

y
rep[Sy]

Example of
augmented linked list solutionaugmented linked-list solution

Each element xj stores pointer rep[xj] to rep[Si].
U ()UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

S ∪ S : rep

• updates the rep pointers for all elements in the
list containing y.

Sx ∪ Sy :

x1 x2

rep

rep
rep[Sx]

y1 y2 y3

rep

10/29/12 CMPS 2200 Intro. to Algorithms 7

rep[Sy]

Example of
augmented linked list solutionaugmented linked-list solution

Each element xj stores pointer rep[xj] to rep[Si].
U ()UNION(x, y)

• concatenates the lists containing x and y, and
• updates the rep pointers for all elements in the

S ∪ S :

• updates the rep pointers for all elements in the
list containing y.

rep
Sx ∪ Sy :

x1 x2

rep[Sx ∪ Sy]
y1 y2 y3

10/29/12 CMPS 2200 Intro. to Algorithms 8

Alternative concatenation
UNION(x, y) could instead

t t th li t t i i d d• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing xlist containing x.

rep

Sx : x1 x2

rep

rep

y1 y2 y3

rep[Sx]
rep

Sy :

10/29/12 CMPS 2200 Intro. to Algorithms 9

rep[Sy]

Alternative concatenation
UNION(x, y) could instead

t t th li t t i i d d• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing xlist containing x.

rep

S ∪ S :
x1 x2rep

rep

Sx ∪ Sy :

y1 y2 y3

rep[Sx]
rep

10/29/12 CMPS 2200 Intro. to Algorithms 10

rep[Sy]

Alternative concatenation
UNION(x, y) could instead

t t th li t t i i d d• concatenate the lists containing y and x, and
• update the rep pointers for all elements in the

list containing xlist containing x.

rep

S ∪ S :
x1 x2repSx ∪ Sy :

y1 y2 y3

rep

10/29/12 CMPS 2200 Intro. to Algorithms 11

rep[Sx ∪ Sy]

Trick 1: Smaller into larger
(weighted union heuristic)(weighted-union heuristic)

To save work, concatenate the smaller list onto the
d f th l li t C t Θ(l th f ll li t)end of the larger list. Cost = Θ(length of smaller list).

Augment list to store its weight (# elements).

• Let n denote the overall number of elements
(equivalently, the number of MAKE-SET operations).
L d h l b f i• Let m denote the total number of operations.

• Let f denote the number of FIND-SET operations.
Theorem: Cost of all UNION’s is O(n log n).
Corollary: Total cost is O(m + n log n).

10/29/12 CMPS 2200 Intro. to Algorithms 12

y (g)

Analysis of Trick 1
(weighted-union heuristic)(weighted union heuristic)

Theorem: Total cost of UNION’s is O(n log n).
Proof. • Monitor an element x and set Sx containing it.
• After initial MAKE-SET(x), weight[Sx] = 1. () g [x]
• Each time Sx is united with Sy:

• if weight[Sy] ≥ weight[Sx]:
1 t d t [] d– pay 1 to update rep[x], and

– weight[Sx] at least doubles (increases by weight[Sy]).
• if weight[S] < weight[S]:if weight[Sy] weight[Sx]:

– pay nothing, and
– weight[Sx] only increases.

10/29/12 CMPS 2200 Intro. to Algorithms 13

Thus pay ≤ log n for x.

Disjoint set forest:
Representing sets as treesRepresenting sets as trees

Store each set Si = {x1, x2, …, xk} as an unordered,
potentially unbalanced not necessarily binary treepotentially unbalanced, not necessarily binary tree,
storing only parent pointers. rep[Si] is the tree root.

S () i i i li

x

Si = {x1, x2, x3, x4, x5 , x6}

rep[S]

• MAKE-SET(x) initializes x
as a lone node.

• FIND SET(x) walks up the
– Θ(1)

x1

x4 x3

rep[Si]• FIND-SET(x) walks up the
tree containing x until it
reaches the root – Θ(depth[x]) x4 x3

x2 x5

reaches the root.
• UNION(x, y) calls FIND-SET twice

and concatenates the trees

Θ(depth[x])

x6

10/29/12 CMPS 2200 Intro. to Algorithms 14

2 5
containing x and y…

6
– Θ(depth[x])

Trick 1 adapted to treesp
• UNION(x, y) can use a simple concatenation strategy:
Make root FIND SET(y) a child of root FIND SET(x)Make root FIND-SET(y) a child of root FIND-SET(x).

• Adapt Trick 1 to this context: x1

y1

• Adapt Trick 1 to this context:
Union-by-weight:
Merge tree with smaller

1

x4 x3

y4 y3

Merge tree with smaller
weight into tree with
larger weight. x2 x5 x6

y2 y5

g g

• Variant of Trick 1 (see book):
Union-by-rank:

10/29/12 CMPS 2200 Intro. to Algorithms 15

Union by rank:
rank of a tree = its height Example: UNION(x4, y2)

Trick 1 adapted to trees
(union-by-weight)(union-by-weight)

• Height of tree is logarithmic in weight, because:
• Induction on n
• Height of a tree T is determined by the two subtrees

T1, T2 that T has been united from.
• Inductively the heights of T1, T2 are the logs of their y g 1, 2 g

weights.
• If T1 and T2 have different heights:

height(T) = max(height(T1) height(T2))height(T) max(height(T1), height(T2))
= max(log weight(T1), log weight(T2))
< log weight(T)

If T d T h th h i ht• If T1 and T2 have the same heights:
(Assume 2≤weight(T1)<weight(T2))
height(T) = height(T1) + 1 = log (2*weight(T1))

10/29/12 CMPS 2200 Intro. to Algorithms 16

≤ log weight(T)
• Thus the total cost of any m operations is O(m log n).

Trick 2: Path compressionp
When we execute a FIND-SET operation and walk

th t th t k th t tiup a path p to the root, we know the representative
for all the nodes on path p. x1

y1

1

x4 x3

Path compression makes
all of those nodes direct

y4 y3x2 x5 x6

children of the root.

Cost of FIND-SET(x)

y2 y5

()
is still Θ(depth[x]).

FIND-SET(y2)

10/29/12 CMPS 2200 Intro. to Algorithms 17

Trick 2: Path compressionp
When we execute a FIND-SET operation and walk

th t th t k th t tiup a path p to the root, we know the representative
for all the nodes on path p. x1

y1

1

x4 x3

Path compression makes
all of those nodes direct

y4 y3x2 x5 x6

children of the root.

Cost of FIND-SET(x)

y2 y5

()
is still Θ(depth[x]).

FIND-SET(y2)

10/29/12 CMPS 2200 Intro. to Algorithms 18

Trick 2: Path compressionp
When we execute a FIND-SET operation and walk

th t th t k th t tiup a path p to the root, we know the representative
for all the nodes on path p. x1

y1 y3y2

1

x4 x3

Path compression makes
all of those nodes direct

y4 y5x2 x5 x6

children of the root.

Cost of FIND-SET(x)

FIND-SET(y2)

()
is still Θ(depth[x]).

10/29/12 CMPS 2200 Intro. to Algorithms 19

Trick 2: Path compressionp

• Note that UNION(x,y) first calls FIND-SET(x) and
FIND-SET(y). Therefore path compression alsoFIND SET(y). Therefore path compression also
affects UNION operations.

10/29/12 CMPS 2200 Intro. to Algorithms 20

Analysis of Trick 2 aloney
Theorem: Total cost of FIND-SET’s is O(m log n).
P f B amorti ation OmittedProof: By amortization. Omitted.

10/29/12 CMPS 2200 Intro. to Algorithms 21

Analysis of Tricks 1 + 2
for disjoint set forestsfor disjoint-set forests

Theorem: In general, total cost is O(m α(n)).

Proof: Long, tricky proof by amortization. Omitted.
See book for a proof sketch for O(m log*(n))See book for a proof sketch for O(m log (n))
runtime.

10/29/12 CMPS 2200 Intro. to Algorithms 22

Ackermann’s function A, and
it’s “inverse” αit s inverse α

Define
⎩
⎨
⎧

≥
=+

= + 1if
,0 if

)(
1

)()1(k
k

jA
j

jA jk iterate j+1 times⎩ ≥− .1if)()(
1 kjA j

k

A0(j) = j + 1 A0(1) = 2
A (1) 3

– iterate j+1 times

A1(j) ~ 2 j
A2(j) ~ 2j 2j > 2j

j

A1(1) = 3
A2(1) = 7
A (1) 2047

2
2

2 j

..
.

j
A3(1) = 2047

22047

..

A3(j) >
A4(j) is a lot bigger.

2
2

A4(1) > 2
2

2
. 2048 times

10/29/12 CMPS 2200 Intro. to Algorithms 23
Define α(n) = min {k : Ak(1) ≥ n} ≤ 4 for practical n.

