

CMPS 2200 – Fall 2012

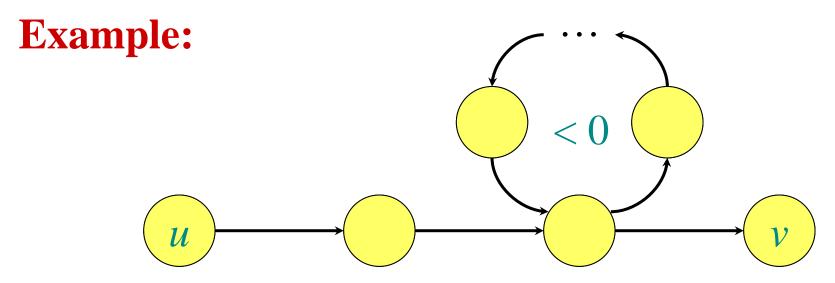
More on Shortest Paths

Carola Wenk

Slides courtesy of Charles Leiserson with changes by Carola Wenk

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.



Bellman-Ford algorithm: Finds all shortest-path weights from a **source** $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

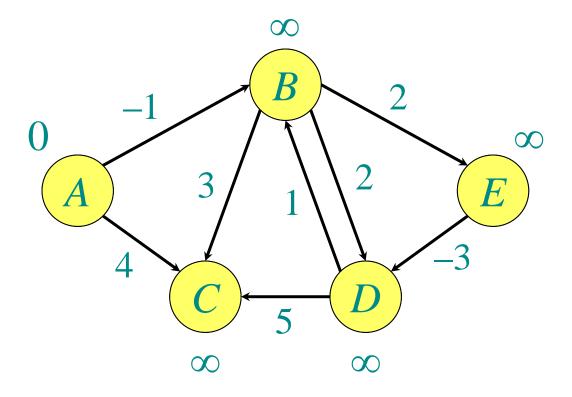
Bellman-Ford algorithm

```
    \begin{aligned}
      d[s] \leftarrow 0 \\
      for each <math>v \in V - \{s\} \\
       do \ d[v] \leftarrow \infty
    \end{aligned}

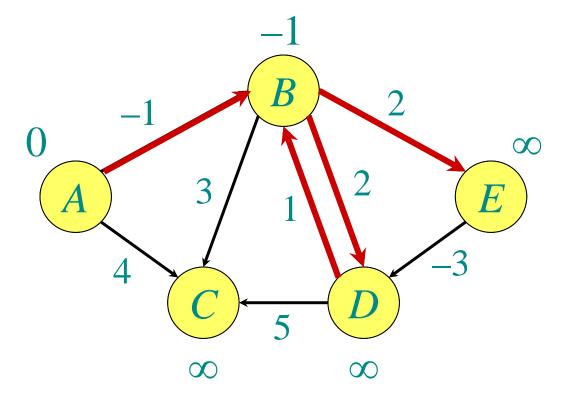
    initialization
for i \leftarrow 1 to |V| - 1 do
   for each edge (u, v) \in E do
       if d[v] > d[u] + w(u, v) then d[v] \leftarrow d[u] + w(u, v) step \pi[v] \leftarrow u
for each edge (u, v) \in E
      do if d[v] > d[u] + w(u, v)
                 then report that a negative-weight cycle exists
```

At the end, $d[v] = \delta(s, v)$. Time = O(|V|/E/).

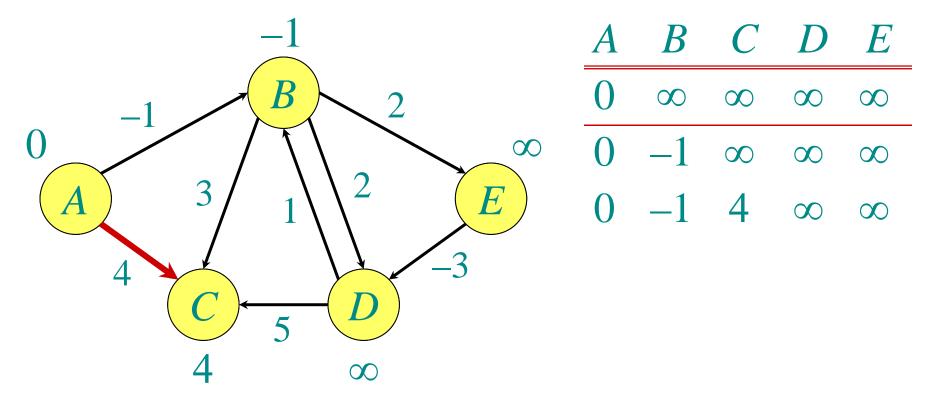
CMPS 2200 Intro. to Algorithms

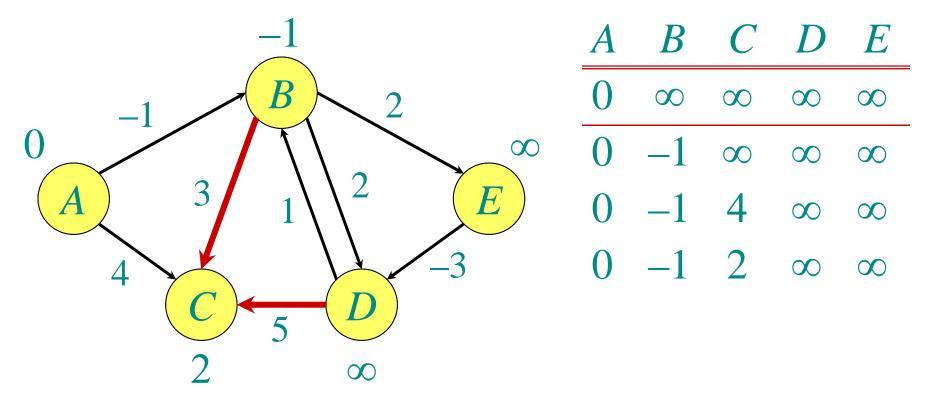


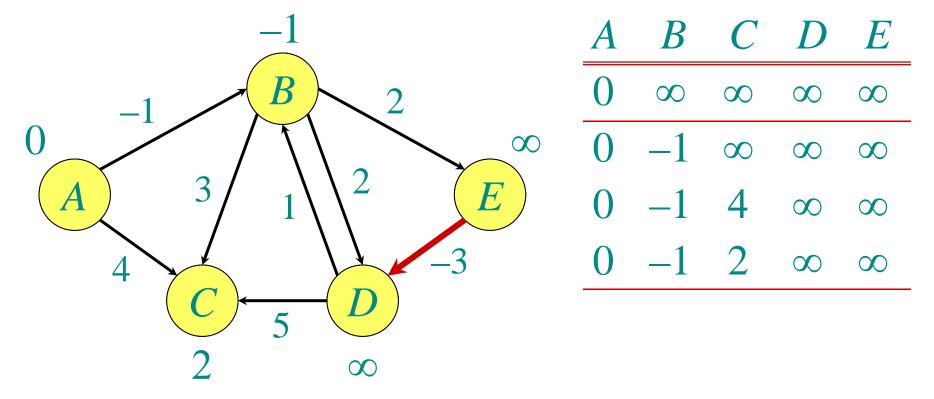
A	\boldsymbol{B}	\boldsymbol{C}	D	\boldsymbol{E}
0	∞	∞	∞	∞

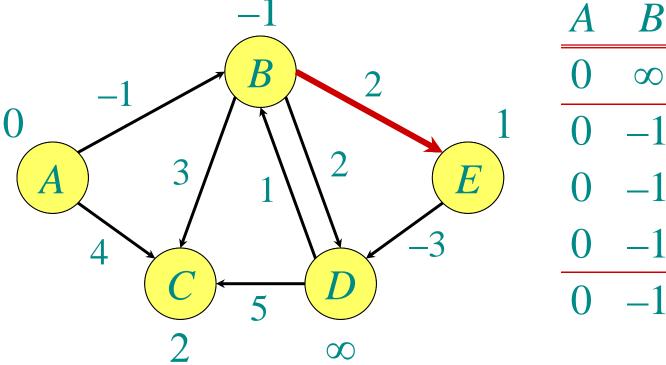


\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞



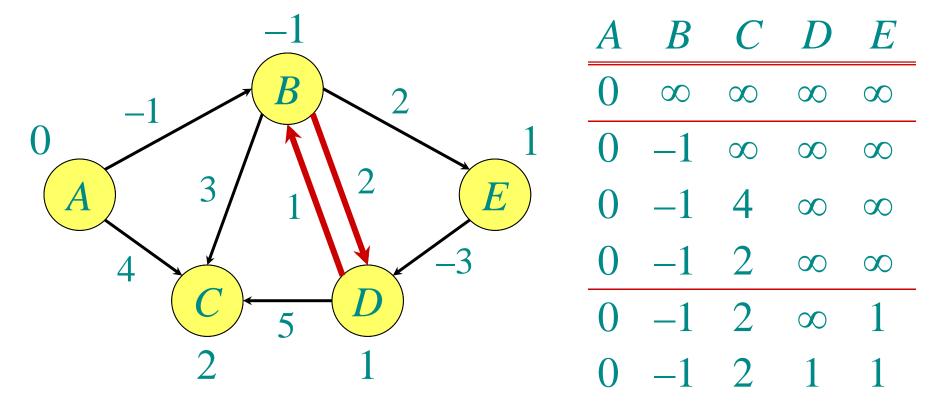




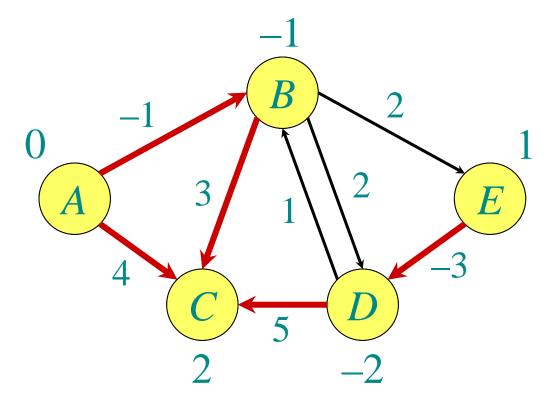


A	\boldsymbol{B}	\boldsymbol{C}	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

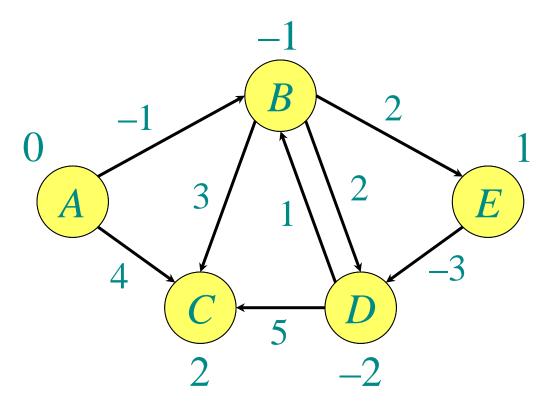


10



\boldsymbol{A}	В	\boldsymbol{C}	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)



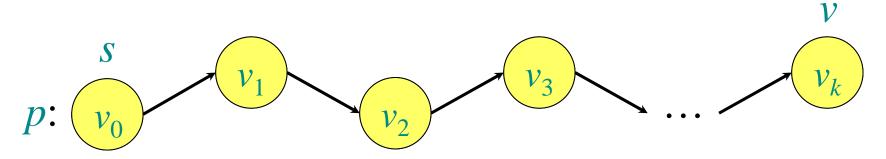
Note: Values decrease monotonically.

$$A \ B \ C \ D \ E$$
 $0 \ \infty \ \infty \ \infty$
 $0 \ -1 \ \infty \ \infty \ \infty$
 $0 \ -1 \ 4 \ \infty \ \infty$
 $0 \ -1 \ 2 \ \infty \ 1$
 $0 \ -1 \ 2 \ 1 \ 1$
 $0 \ -1 \ 2 \ -2 \ 1$
... and 2 more iterations

Correctness

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

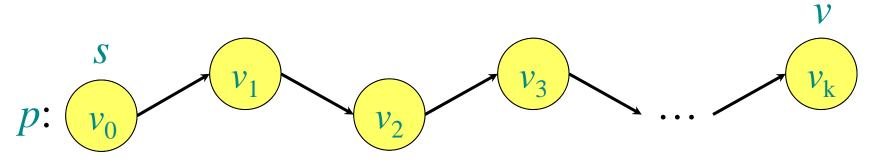
Proof. Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.



Since *p* is a shortest path, we have

$$\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i).$$

Correctness (continued)



Initially, $d[v_0] = 0 = \delta(s, v_0)$, and d[s] is unchanged by subsequent relaxations.

- After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$.

• • •

• After k passes through E, we have $d[v_k] = \delta(s, v_k)$. Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq |V| - 1$ edges.

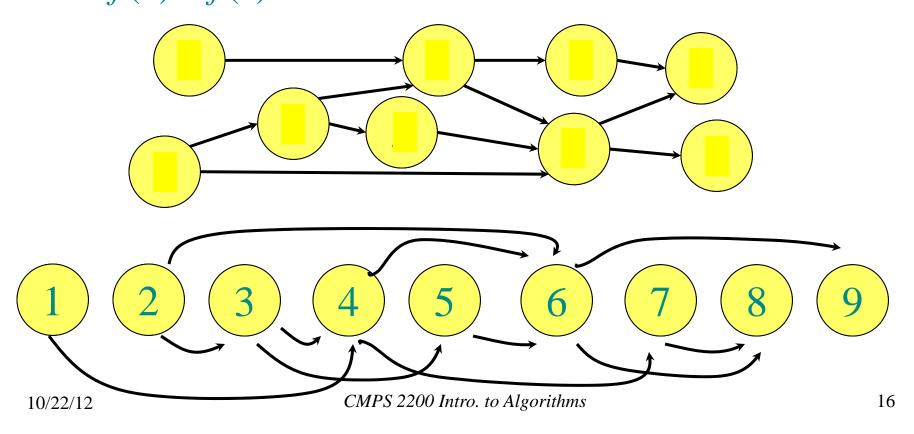
Detection of negative-weight cycles

Corollary. If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in G reachable from s.

DAG shortest paths

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

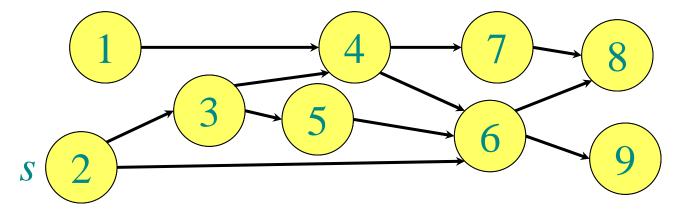
• Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) < f(v)$.



DAG shortest paths

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

- Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) < f(v)$.
- O(|V| + |E|) time



• Walk through the vertices $u \in V$ in this order, relaxing the edges in Adj[u], thereby obtaining the shortest paths from s in a total of O(|V| + |E|) time.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: O(|V|/E|)
- DAG: One pass of Bellman-Ford: O(|V| + |E|)