CMPS 2200 - Fall 2012

Divide-and-Conquer 111

Carola Wenk

Slides courtesy of Charles Leiserson
with changes and additions by Carola Wenk

9/17/12 CMPS 2200 Introduction to Algorithms

9/17/12

The divide-and-conquer
design paradigm

. Divide the problem (instance) into

subproblems.
a subproblems, each of size n/b

. Conguer the subproblems by solving them

recursively.

. Combine subproblem solutions.

Runtime for divide and combine is f(n)

CMPS 2200 Introduction to Algorithms 2

The master method

The master method applies to recurrences of
the form

T(n)=aT(n/b) +f(n),

wherea > 1,b > 1, and f 1s asymptotically
positive.

9/17/12 CMPS 2200 Introduction to Algorithms

Example: merge sort

1. Divide: Trivial.

2. Conquer: Recursively sort a=2
subarrays of size n/2=n/b

3. Combine: Linear-time merge, runtime
f(n)eO(n)
T(n) =2T(n/2) +O(N)~_

subproblems subproblem size \évr?g ‘;gr'%’,!ﬁmﬁg
\

T(n) =aT(n/b) + f(n)

9/17/12 CMPS 2200 Introduction to Algorithms 4

Master Theorem

T(n) =aT(n/b) + f(n)
CASE 1:
f(n) = O(nlogpa-e¢) = T(n) = ©(n'o9pa)

CASE 2:
f(n) = ©(n'o%2 Jogkn) = T(n) = O(n'°%a |ogk+in)

CASE 3.

f(n) = Q(nlogba+ g)
and af(n/b)<cf(n) r = T(n)=0(f(n))
for some constantc < 1

9/17/12 CMPS 2200 Introduction to Algorithms 5

How to apply the theorem

Compare f(n) with n'ogba;

1. f(n) = O(n'o%a-=) for some constant ¢ > 0.

« £ (n) grows polynomially slower than n'oda
(by an n¢ factor).

Solution: T(n) = ©(n'o%a)

2. f(n) = ®(n'°%? Jog“n) for some constant k > 0.
e f(n) and n'°%2 grow at similar rates.
Solution: T(n) = ®(n'°%a [og*tin) .

9/17/12 CMPS 2200 Introduction to Algorithms 6

How to apply the theorem

Compare f(n) with n'ogba;

3. f(n) = Q(n'o%a*2) for some constant ¢ > 0.

* f(n) grows polynomially faster than n'o%? (by
an n¢ factor),

and f(n) satisfies the regularity condition that
af(n/b) <cf(n) for some constant ¢ < 1.

Solution: T(n) = O®(f(n)).

9/17/12 CMPS 2200 Introduction to Algorithms 7

Example: merge sort

1. DiviC
2. Cono

e: Trivial.
uer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

subproblems-subproblem size

T(n) =2T(n/2) + O(N)~—_
work dividing
and combining

nlodbad = nlog22 = nl = n = Case 2 (k = 0)
= T(n) =O(nlogn) .

9/17/12

CMPS 2200 Introduction to Algorithms 8

Example: binary search
T(n) =1T(n/2) +B(1)

subproblems work dividing
subproblem size and combining

nlodbd = nlogzl = n0 =1 = Case 2 (k = 0)
= T(n) = O(logn) .

9/17/12 CMPS 2200 Introduction to Algorithms

Matrix multiplication;

Divide-and-conqguer algorithm

IDEA:
nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

O
1
vy

r =a-efFb-g"
s =a-fiEb:h >8 recursive mults of (n/2)x(n/2) submatrices
t =c-e+d-g |4 addsof (n/2)x(n/2) submatrices

u =c-fd-h_

9/17/12 CMPS 2200 Introduction to Algorithms 10

Matrix multiplication;
Analysis of D&C algorithm

T(n) = 8T(n/2) + B(n?)

g |
submatrices work adding

. submatrices
submatrix size

nlogba = nlog28 = n3 = Case 1 = T(n) = O(nd)

No better than the ordinary matrix
multiplication algorithm.

9/17/12 CMPS 2200 Introduction to Algorithms 11

Strassen’s algorithm

1. Divide: Partition A and B Into
(n/2)x(n/2) submatrices. Form P-terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

T(n) =7T(n/2) + B(n?
n'odba = nlog2’ x 281 = Case 1 = T(n) = O(n'°97)

9/17/12 CMPS 2200 Introduction to Algorithms 12

Master theorem: Examples

Ex. T(n) =4T(n/2) + sqgrt(n)
a=4,b=2=nlgwa=n? f(n) =sqrt(n).
Case 1: f(n) = O(n?-¢) for e = 1.5,

- T(n) = ©(n?).

Ex. T(n) =4T(n/2) + n?
a=4,b=2=nlga=n? f(n) =n?
Case 2: f(n) = ®(n’log®n), that is, k = 0.
- T(n) = ®(n%logn).

9/17/12 CMPS 2200 Introduction to Algorithms 13

Master theorem: Examples

Ex. T(n) =4T(n/2) + n3
a=4,b=2=nlga=n? f(n) =ns
Case 3:f(n)=Q(n**¢) fore=1
and 4(n/2)? < cn?(reg. cond.) for c = 1/2.
s T(n) = B(nd).

Ex. T(n) =4T(n/2) + n4/logn
a=4,b=2= nla=n2 f(n) =n?logn.
Master method does not apply. In particular,
for every constant € > 0, we have log n € o(n?).

9/17/12 CMPS 2200 Introduction to Algorithms 14

Conclusion

 Divide and conquer Is just one of several
powerful techniques for algorithm design.

 Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method .

 Can lead to more efficient algorithms

VAT CNMPS 2200

15

