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Outline

1. 1D embedded data: Curves and embedded & immersed graphs
2. Hausdorff and Fréchet-like distances: 

3. Local persistent homology distance and local signatures
4. Other distances

• Hausdorff distance
• Fréchet distance
• Path-based distance

• Traversal distance
• Strong/weak graph distance
• Contour tree distance

• Edit distance for geometric graphs
• Shortest path sampling distance
• Point sampling distance
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1. 1D Embedded Data
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1D Embedded Data
GPS trajectories

Want to compare and/or align in 
order to find similarities or patterns

Set of trajectories Sub-trajectory clusters



embedded in abient (usually Euclidean) space



Constructed roadmap
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Roadmap comparison
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Plant morphology

Protein chains

From turbosquid.com

Neuron

• Want to compare such 1D embedded data
 Geometric shapes

• There are lots of distance measures and 
algorithms for comparing curves, and 
some for trees. But not so many for 
embedded (geometric) graphs.

• Graphs are the most general 1D shapes.

• Want to compare such 1D embedded data
 Geometric shapes

• There are lots of distance measures and 
algorithms for comparing curves, and 
some for trees. But not so many for 
embedded (geometric) graphs.

• Graphs are the most general 1D shapes.
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Curves 
• A curve is a continuous map f:[0,1]  ℝd

• Many different curves can have the same image.
• We can reparameterize curves: f∘: [0,1]  ℝd, where : [0,1]  [0,1] 

is a reparameterization. 

f(0) f(1)

f(0.2) f(0.4)
f(0.45)

f(0.6)

f((0)) f((1))

f((0.5)) f((0.8))
f((0.81))

f((0.9))
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Polygonal Curves & Trajectories 
• Polygonal curves consist of a finite number of line segments and 

vertices. They can be specified by a sequence of points <p0,..., pn-1>

• We typically endow a polygonal curve with its arc-length 
parameterization f:[0,1]  ℝd. On each edge pipi+1 this is a linear 
function, hence a piecewise linear function overall.

• A (geospatial) trajectory is a sequence of time-stamped position 
samples.

p0

p1

p2

p3

p4

p5

p6
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Embedded/Immersed Graphs
• Graph 𝐺 ൌ ሺ𝑉, 𝐸ሻ with a set of vertices 𝑉 and edges 𝐸. 
• Road network: Planar embedded 

• Can consider 𝐺 as a topological space (e.g., 1D simplicial complex)
• Embedded graph: Have a continuous function 𝜙: 𝐺 → ℝௗ , 𝑑 ൒ 2, that is 

homeomorphic onto its image.
• Immersed graph: 𝜙: 𝐺 → ℝௗ is only locally homeomorphic onto its 

image. 

undirected 

directed 
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Embedded/Immersed Graphs
• Embedded graph: Have a continuous function 𝜙: 𝐺 → ℝௗ , 𝑑 ൒ 2, that is 

homeomorphic onto its image.
• Immersed graph: 𝜙: 𝐺 → ℝௗ is only locally homeomorphic onto its 

image. 

=> Each vertex is mapped to a point and edges are mapped to curves in ℝௗ in 
such a way that the graph structure is maintained.

– Homeomorphism: A continuous, bijective map whose inverse is continuous.

• ℝଶ: planar graphs vs. plane (= planar embedded) graphs
• Assume edge curves are piecewise linear, and may ignore deg-2 vertices

Immersion: 
“Bridges” are allowed

Embedding: 
all edge-curves are non-crossing
(every crossing is a vertex)

ignored 
degree-2 
vertices
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Immersed Graph Comparison
Given two immersed graphs 𝐺 ൌ ሺ𝑉 , 𝐸ீ, 𝜙ீሻ and H ൌ ሺ𝑉ு, 𝐸ு, 𝜙ுሻ, we want 
to compare them.
• How similar / different are they?
• What does it mean to be similar?

– Depends on the application.
– Graph isomorphism?

• Here: Assume 𝐺 and H are embedded in the same space and aligned.
1. Define different distances between 𝐺 and H, and study their properties and 

computational complexities. 
2. Compute correspondences between portions of 𝐺 and H.
3. Consider local distance signatures (heatmaps).
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Graph Isomorphism
• An isomorphism of 𝐺 ൌ ሺ𝑉 , 𝐸ீሻ and H ൌ 𝑉ு, 𝐸ு is a 

– bijective map  𝑓: 𝑉 → 𝑉ு for which holds
– 𝑢, 𝑣 ∈ 𝐸ீ ⇔ 𝑓ሺ𝑢ሻ, 𝑓ሺ𝑣ሻ ∈ 𝐸ு

Can be computed in linear time for planar graphs [HW74]
• Subgraph isomorphism: An isomorphism between 𝐺 and a subgraph of H

– NP-complete
– Can be computed in linear time if 𝐺 and H are planar

and 𝐺 has constant complexity [E95]

• Isomorphisms are bijective (1-to-1). However, 
we may want to allow 1-to-many assignments. 

• We may also want to allow partial matchings.
• Isomorphisms are combinatorial in nature and don’t take the 

embeddings/immersions into account.

[E95] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, SODA: 632–640, 1995.
[HW74] J. Hopcroft, J. Wong, Linear time algorithm for isomorphism of planar graphs, STOC: 172–184, 1974. 11/52



Compare Reconstructed Roadmaps
Reconstructed RoadmapsGPS Trajectory Data
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Compare Reconstructed Roadmaps
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• How can one measure the quality of constructed maps?
• Surprisingly, there is no applicable ground truth map:

– Professional maps
– Do not cover the same area and the same details as a given input set of 

trajectories

Compare Reconstructed Roadmaps

 Compare two immersed graphs
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2. Hausdorff and 
Fréchet-Like Distances

AB
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Hausdorff Distance
•Directed Hausdorff distance 

𝛿ு (A,B) = max min || a-b ||

• Undirected Hausdorff-distance 
(A,B) = max (𝛿ு(A,B) , 𝛿ு(B,A) )

AB

𝛿ு(B,A)
𝛿ு(A,B)

• Con: When applied to graph 
comparison, only compares the 
geometry but not the topology
• Pro: 𝛿ு allows for partial comparison 
of one graph

aA bB

• Can be computed in polynomial time; O(N log N) in the plane

• is a metric on the set of compact subsets of ℝௗ
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Metric Properties

• Metric: Fulfills 1.-4.
• Directed: Does not fulfill 2.
• Pseudo-metric: 1., 2., 4.
• Semi-metric: 1., 2., 3.
• Quasi-metric: 1., 3., 4.

 𝛿ு is a directed pseudo-metric
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F(f,g) =      inf              max    ||f((t))-g((t))||
:[0,1]   [0,1]   t [0,1]

where and  range over continuous monotone increasing 
reparameterizations only. • Man and dog walk on 

one curve each

• They hold each other at 
a  leash

• They are only allowed 
to go forward

• F is the minimal 
possible leash length

f

g

Fréchet Distance for Curves

[F06] M. Fréchet, Sur quelques points de calcul fonctionel, Rendiconti del Circolo Mathematico di Palermo 22: 1-74, 1906.
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Free Space Diagram

• Let  > 0 fixed  (eventually solve decision problem)
• F(f,g) = { (s,t)[0,1]2 | || f(s) - g(t)||   } white points

free space of f and g
• The free space in one cell is an ellipse. 

g

f

>

g

f
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Free Space Diagram

 Monotone path encodes reparametrizations of f and g
 F(f,g)   iff there is a monotone path in the free space 

from (0,0) to (1,1)
 Such a path can be computed using DP in O(mn) time





g

f

g

f
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Free Space Diagram

 Monotone path encodes reparametrizations of f and g
 F(f,g)   iff there is a monotone path in the free space 

from (0,0) to (1,1)
 Such a path can be computed using DP in O(mn) time





g

f

g

f
1

1

0
0
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Weak Fréchet Distance

• Weak Fréchet distance wF(f,g): Allow any 
continuous reparameterizations  and 
 Any continuous path in free space (not necessarily 
monotone)

• H(f,g)  wF(f,g)  F(f,g)
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Map-Matching
Given: A graph G, a curve l, and a distance parameter .

Task: Find a path  in G such that F(l,)≤

l

ε

G

l

π

G

l

ε

l

ε

G

l

π

G

l

ε

l

l



Compute free space surface.
And find path ’ in it

G



Such a path can be computed using DP in O(mn) time
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Let 𝐴, 𝐵 ⊆ ℝ௞ be two oriented manifolds. And let 𝑓: 𝐴 → ℝௗ and 
g: 𝐵 → ℝௗ be two immersions.  Then

𝛿ி 𝑓, 𝑔 ൌ infఈ max௧∈஺ 𝑓 𝑡 െ 𝑔ሺ𝛼 𝑡 ሻ , 
where 𝛼: 𝐴 → 𝐵 ranges over all orientation-preserving 
homeomorphisms.

Fréchet Distance, General

 The Fréchet distance is a pseudo-metric (separability is not 
fulfilled, since shapes with different parameterizations can have 
distance 0). 

 Originally defined for oriented manifolds, but can be generalized
even further.
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Let 𝐺 ൌ ሺ𝑉 , 𝐸ீ, 𝜙ீሻ and H ൌ ሺ𝑉ு, 𝐸ு, 𝜙ுሻ be two immersed graphs. 

Fréchet Distance, Immersed Graphs

 We can apply the Fréchet distance definition in principle on the 
maps 𝜙ீ and 𝜙ீ . 

 Drop the „orientation-preserving“ requirement.
 Equivalent definition:

𝛿ி 𝐺, 𝐻 ൌ inf
ఈ

max 
௘∈ாಸ

𝛿ிሺ𝑒, 𝛼 𝑒 ሻ,

where 𝛼 ranges over all edge mappings corresponding to 
isomorphisms of 𝐺 and H. 

[BKN20] M. Buchin, A. Krivosija, A. Neuhaus. Computing the Fréchet distance of trees and graphs of bounded tree width. EuroCG. 2020
[FW21] P. Fang, C. Wenk. The Fréchet distance for plane graphs. EuroCG 21.

 Is graph-isomorphism hard. Can be computed in poly time for 
trees and for graphs of bounded tree-width. [BKN20]

 For planar graphs, can enumerate orientation-preserving
isomorphisms in polynomial time. [FW21] 
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Path-Based Distance

[AFHW14] M. Ahmed, B. Fasy, K. Hickmann, C. Wenk, Path-based distance for street map comparison, arXiv:1309.6131, 2014.

• Directed Hausdorff distance on path-sets:

• path-set in G, and         path-set in H

•Asymmetry of distance definition is desirable, if G is a 
reconstructed map and H a ground-truth map.

Fréchet distance
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Path-Based Distance
• Ideally, ீ and ு are the set of all paths in G and H

[AFHW14] M. Ahmed, B. Fasy, K. Hickmann, C. Wenk, Path-based distance for street map comparison, TSAS 1(1): article 3,
28 pages, 2015.

map-matching• It is a directed pseudo-metric.

• One can use the set of paths of 
link-length three to approximate the 
overall distance in polynomial time, 
if vertices in G are well-separated 
and have degree ≠ 3.
→ Stitch link-length three paths 
together to form longer paths 
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𝐺 𝐻

Traversal Distance

[AERW03] H. Alt, A. Efrat, G. Rote, C. Wenk, Matching Planar Maps, Journal of Algorithms 49: 262-283, 2003.

Let 𝐺 ൌ ሺ𝑉 , 𝐸ீ, 𝜙ீሻ and H ൌ ሺ𝑉ு, 𝐸ு, 𝜙ுሻ be two immersed graphs. 
 Represent 𝐺 by traversals 𝑓: 0,1 → 𝐺 (continuous, surjective) and 

𝐻 by partial traversals g: 0,1 → 𝐻:
𝑑் 𝐺, 𝐻 ൌ inf

௙,௚
max

௧∈ሾ଴,ଵሿ
𝑓 𝑡 െ 𝑔ሺ𝑡ሻ

 Can be computed in O(mn log mn) time
using free space diagram.

 Is a directed distance, but fulfills neither 
separability nor triangle inequality.

 Concides with the weak Fréchet distance
when 𝐺 and H are polygonal curves.

Small traversal distance
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Traversal Distance

[AERW03] H. Alt, A. Efrat, G. Rote, C. Wenk, Matching Planar Maps, Journal of Algorithms 49: 262-283, 2003.
29/52



Strong and Weak Graph Distances

[ABKSW21] H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, C. Wenk, Distance Measures for Embedded Graphs, CGTA 95, 101743, 2021.

Let 𝐺 ൌ ሺ𝑉 , 𝐸ீ, 𝜙ீሻ and H ൌ ሺ𝑉ு, 𝐸ு, 𝜙ுሻ be two immersed graphs. 
 Define a graph mapping 𝑠: 𝐺 → 𝐻 as follows:

 𝑠 sends each 𝑣 ∈ 𝑉 to a point 𝑠 𝑣 ∈ 𝐻
 𝑠 sends each e ∈ 𝐸ீ to a simple path from 𝑠 𝑢  to 𝑠 𝑣 in 𝐻.

 Then the strong graph distance is
𝛿 𝐺, 𝐻 ൌ inf

௦:ீ→ு
max 
௘∈ாಸ

𝛿ிሺ𝑒, 𝑠 𝑒 ሻ

 The weak graph distance 𝛿௪ uses 𝛿௪ி instead of 𝛿ி.

 We have 𝑑் 𝐺, 𝐻 ൑ 𝛿௪ 𝐺, 𝐻 ൑ 𝛿 𝐺, 𝐻
 NP-hard to decide, but can be computed in poly time for trees, and 

the weak graph distance can be computed in poly time for planar 
embedded graphs.
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Traversal and Graph Distance

[ABKSW21] H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, C. Wenk, Distance Measures for Embedded Graphs, CGTA 95, 101743, 2021.

• Small traversal distance
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Traversal and Graph Distance

[ABKSW21] H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, C. Wenk, Distance Measures for Embedded Graphs, CGTA 95, 101743, 2021.

• Large graph distance
• Small traversal distance • Small traversal distance
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Traversal and Graph Distance

[ABKSW21] H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, C. Wenk, Distance Measures for Embedded Graphs, CGTA 95, 101743, 2021.

• Large graph distance
• Small traversal distance • Small traversal distance

• Large graph distance
• Both small
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Strong and Weak Graph Distances

[ABKSW21] H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, C. Wenk, Distance Measures for Embedded Graphs, CGTA 95, 101743, 2021.
34/52



Contour Tree Distance

[BOS17] K. Buchin, T. Ophelders, B. Speckmann. Computing the Frechet distance between real-valued surfaces. SODA: 2443–2455, 2017.

Let 𝐺 ൌ ሺ𝑉 , 𝐸ீ, 𝜙ீሻ and H ൌ ሺ𝑉ு, 𝐸ு, 𝜙ுሻ be two connected 
immersed graphs. 
 The contour tree distance is

𝑑஼ 𝐺, 𝐻 ൌ inf
ఛ

sup 
௫,௬ ∈ఛ

𝑥 െ 𝑦 ,

where 𝐺 ranges over all correspondences 𝜏 between 𝐺 and H such that
1. 𝜏 ⊆ 𝐺 ൈ 𝐻 is connected
2. For each 𝑥 ∈ 𝐺: The set 𝜏 ∩ 𝑥 ൈ 𝐻 is non-empty and connected
3. For each y ∈ 𝐻: The set 𝜏 ∩ 𝐺 ൈ 𝑦 is non-empty and connected
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Contour Tree Distance

[BOS17] K. Buchin, T. Ophelders, B. Speckmann. Computing the Frechet distance between real-valued surfaces. SODA: 2443–2455, 2017.

𝑑஼ 𝐺, 𝐻 ൌ inf
ఛ

sup 
௫,௬ ∈ఛ

𝑥 െ 𝑦 ,

where 𝐺 ranges over all correspondences 𝜏 between 𝐺 and H such that
1. 𝜏 ⊆ 𝐺 ൈ 𝐻 is connected
2. For each 𝑥 ∈ 𝐺: The set 𝜏 ∩ 𝑥 ൈ 𝐻 is non-empty and connected
3. For each y ∈ 𝐻: The set 𝜏 ∩ 𝐺 ൈ 𝑦 is non-empty and connected



𝐺

𝐻

𝐺

𝐻

𝑥

𝑦
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Contour Tree Distance

[BOS17] K. Buchin, T. Ophelders, B. Speckmann. Computing the Frechet distance between real-valued surfaces. SODA: 2443–2455, 2017.
[BKW21] M. Buchin, B. Kilgus, C. Wenk. Ongoing work.

 The contour tree distance is a metric.
 But it is NP-complete, already for trees.
 This distance seems to correspond to a symmetric version of the 

(strong or weak) graph distances.  
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3. Local Persistent 
Homology Distance 
and Local Signatures
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Excursion into Computational Topology:
Persistent Homology

Adapted from Tamal Dey’s slides http://ww2.ii.uj.edu.pl/wsocm/slides/DEY.pdf

• Develop topological descriptors to analyze point set shapes

• It looks like this shape contains two cycles. But how do we know?

• Let’s make the points thicker:
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Persistent Homology

Adapted from Tamal Dey’s slides http://ww2.ii.uj.edu.pl/wsocm/slides/DEY.pdf

• f 𝑥 ൌ 𝑑 𝑥, 𝑃 : distance to point cloud 𝑃
• Sublevel sets 𝑓ିଵሾ0, 𝑟ሿ are union of balls
• Evolution of the sublevel sets with increasing radius 𝑟

 The left hole persists longer
• Growing union of balls are nested topological spaces

 a filtration
homology classes (groups)nested

 persistent homology classes (groups)
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Persistence Diagram

Adapted from Tamal Dey’s slides http://ww2.ii.uj.edu.pl/wsocm/slides/DEY.pdf

• f 𝑥 ൌ 𝑑 𝑥, 𝑃 : distance to point cloud 𝑃
• Sublevel sets 𝑓ିଵሾ0, 𝑟ሿ are union of balls

• 𝐷𝑔𝑚ሺ𝑓, 𝑃ሻ is the persistence diagram
of 𝑃

• Each point in 𝐷𝑔𝑚ሺ𝑓, 𝑃ሻ is a pair of
r-values: (birth, death)

•  Topological descriptor of P
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Bottleneck Distance

From Gudhi tutorial: http://bertrand.michel.perso.math.cnrs.fr/Enseignements/TDA/Tuto-Part2.html
42/52



Local Persistent Homology Distance

[AFW14] M. Ahmed, B. Fasy, C. Wenk, Local persistent homology based distance between maps, ACM SIGSPATIAL, 10 pages, 2014.

• Consider a common local 
neighborhood of both maps.

• Consider the cycles of each
graph inside this neighborhood.

• Now thicken each graph and 
track changes in the cycle structure
using persistent homology

 Use (bottleneck) distance between persistence diagrams to 
compare changing local cycle structure
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Local Persistent Homology Distance
• Local “signature” that captures local topological similarity of 
graphs:

where    is the bottleneck distance between the 
two persistence diagrams

• Fixed radius: 

• Local homology metric: 

[AFW14] M. Ahmed, B. Fasy, C. Wenk, Local persistent homology based distance between maps, ACM SIGSPATIAL, 10 pages, 2014.

𝑥
𝑟

𝑥
𝑟
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Local Persistent Homology Distance

[AFW14] M. Ahmed, B. Fasy, C. Wenk, Local persistent homology based distance between maps, ACM SIGSPATIAL, 10 pages, 2014.

• Compared two reconstructed
maps.

• Disk centers sampled 5m;
disk radius 25m

• Local signature captures
different topology (missing
intersections) well

Local homology Hausdorff Path-based (Fréchet)
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4. Other Distances
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Geometric Edit Distance

[CGKSS09] O. Cheong, J. Gudmundsson, H.-S. Kim, D. Schymura, F. Stehn, Measuring the similarity of geometric graphs, SEA: 101–112, 
2009.

• Geometric Edit Distance [CGKSS09]

• Defined for straight-line embedded graphs. 

• Motivated by Chinese character comparison

• Perform the following edit operations in this order: 
Edge deletion, vertex deletion, 
vertex translation, 
vertex insertion, edge insertion

• Costs are proportional to edge 
lengths and to the distance a 
vertex has been translated.

• Is a metric. But NP-hard.
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Shortest Path Sampling Distance 

[KP12] S. Karagiorgou, D. Pfoser, On vehicle-tracking data-based road network generation, 20th ACM SIGPATIAL: 89-98, 2012.

• Shortest Path Sampling Distance [KP12] in ℝଶ:

• Randomly sample x, y ∈ ℝଶ

• Find nearest neighbors 𝑥ீ, 𝑦ீ on 𝐺 and compute a shortest path 
𝜋ீ from 𝑥ீ to 𝑦ீ in 𝐺.

• Similarly, compute a shortest 𝜋ு from 𝑥ு to 𝑦ு in 𝐻.

• Compute 𝛿ிሺ𝜋ீ, 𝜋ுሻ.

• Repeat for several random samples, and compare sets of 
resulting distances
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[BE12b] J. Biagioni, J. Eriksson, Inferring road maps from global… TRR: J. of the Transportation Research Board 2291, 61-71, 2012.

• In a local neighborhood of both graphs, 
traverse the graphs (from random 
seeds) and place point samples. 
(Only graph edges of length  .)

• : match_distance threshold
m=m():  #samples in 𝐺

Point Sampling Distance

k=k() = #matched samples (1-1) within distance 
• Precision: p = k/n Recall: r = k/m F-score: 2pr/(p+r) = 2k/(n+m)

n=n(): #samples in 𝐻
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Point Sampling Distance
𝐺 = OSM ground-truth: m samples; 𝐻 = constructed map: n samples

Chicago

Biagioni and Karagiorgou: F-score decreases, precision increases
→ More matched samples (k), more (unmatched) ground-truth samples (m) 

2k/(n+m) p = k/n


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[BE12b] J. Biagioni, J. Eriksson, Inferring road maps from global… TRR: J. of the Transportation Research Board 2291, 61-71, 2012.

• Can also be used as a local distance signature.
• Lacks theoretical foundation but is practical.
• Does not work well if the reconstructed graph is compared with 
more a detailed ground-truth graph (e.g., OSM).
• Provides a matching (1-to-1) between a subset of points in 𝐺 and 𝐻

Point Sampling Distance

51/52

• What is a good matching?
• Can one define this continuously 
(and compute/approximate efficiently)?



Conclusion & Discussion

1. We’ve seen a lot of distances for immersed graphs.
• Are they useful in practice? (Noisy input, runtimes)
• What are their mathematical properties? (Metric, topological)

2. Would like to compute a correspondence / mapping between the 
two graphs efficiently.
• An application: Merge multiple road networks

3. Optimize under transformations
4. Local signatures: 

• Useful to identify local differences
• Compute global correspondence from

local correspondences?
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