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Outline

1D embedded data: Curves and embedded & immersed graphs

. Hausdorft and Fréchet-like distances:

e Hausdorff distance ¢ Traversal distance

* Fréchet distance * Strong/weak graph distance
* Path-based distance * Contour tree distance

. Local persistent homology distance and local signatures
Other distances

* Edit distance for geometric graphs
* Shortest path sampling distance
* Point sampling distance
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|. 1D Embedded Data
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1D Embedded Data

embedded in abient (usually Euclidean) space

GPS trajectories Protein chains Set of trajectories  Sub-trajectory clusters

From turbosquid.com

* Want to comparesuch 1D embedded data
= Geometric shapes

m(b<"§=n

—Want to

orderto fite  There are lots of distance measures and

algorithms for comparing curves, and
some for trees. But not so many for
embedded (geometric) graphs.

Constructed roadmap

T Plant mor

Graphs are the most general 1D shapes.
¢ ; = Koadmap comparison

©w o 6@

5/52




Curves

A curve is a continuous map f:[0,1] — Rd

£(0.6)

f(0) f(1)

t(0.2) " 0.4)
(0.45)
Many different curves can have the same image.
We can reparameterize curves: foa: [0,1] — RY, where a.: [0,1] — [0,1]
1S a reparameterization. f(0(0.9))

f(a(0)) f(a(D))

f(0(0.5)) f(a(0.8
f(0(0.81)) o2



Polygonal Curves & Trajectories

Polygonal curves consist of a finite number of line segments and
vertices. They can be specified by a sequence of points <p,..., P,.;>

P>

Po

We typically endow a polygonal curve with its arc-length
parameterization f:[0,1] = R On each edge p,p,,, this is a linear
function, hence a piecewise linear function overall.

A (geospatial) trajectory 1s a sequence of time-stamped position
samples.
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Embedded/Immersed Graphs

 Graph G = (V, E) with a set of vertices I and edges E.

* Road network: Planar embedded

directed

» Can consider G as a topological space (e.g., 1D simplicial complex)

- Embedded graph: Have a continuous function ¢: G — R% , d > 2, that is
homeomorphic onto its image.

« Immersed graph: ¢: G - R? is only locally homeomorphic onto its
1mage.
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Embedded/Immersed Graphs

« Embedded graph: Have a continuous function ¢: G —» R% , d > 2, that is
homeomorphic onto its image.

« Immersed graph: ¢: G — R? is only locally homeomorphic onto its
image.

=> Each vertex is mapped to a point and edges are mapped to curves in R? in
such a way that the graph structure is maintained.

— Homeomorphism: A continuous, bijective map whose inverse 1s continuous.

Embedding: Immersion:
all edge-curves are non-crossing “Bridges” are allowed ignored
(every crossing is a vertex) degree-2
VGI’thCS
o R?: planar graphs vs. plane (= planar embedded) graphs

 Assume edge curves are piecewise linear, and may ignore deg-2 vertices
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Immersed Graph Comparison

Given two immersed graphs G = (V;, E¢, ¢¢) and H = (Vy, Ey, ), we want
to compare them.

 How similar / different are they?

What does it mean to be similar?

— Depends on the application.

— Graph 1somorphism?

e Here: Assume G and H are embedded in the same space and aligned.

1. Define different distances between G and H, and study their properties and
computational complexities.

2. Compute correspondences between portions of ¢ and H.

3. Consider local distance signatures (heatmaps).
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Graph Isomorphism

« Anisomorphism of G = (V;,E;) and H = (Vy, Ey) isa
— bijective map f:V; — Vy for which holds
- {wvy€E; @ {f(w), f(v)} € Ey
Can be computed in linear time for planar graphs [HW74]

* Subgraph isomorphism: An isomorphism between G and a subgraph of H
— NP-complete -

B |

— Can be computed in linear time if G and H are planar
and G has constant complexity [E95]

[]
 Isomorphisms are bijective (1-to-1). However, ;%\ %
we may want to allow 1-to-many assignments. 3z / r,bx 3

 We may also want to allow partial matchings.

ik j’thr

« Isomorphisms are combinatorial in nature and don’t take the
embeddings/immersions into account.

[E95] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, SODA: 632—640, 1995.
[HW74] J. Hopcroft, J. Wong, Linear time algorithm for isomorphism of planar graphs, STOC: 172—-184, 1974. 11/52



Compare Reconstructed Roadmaps

GPS Trajectory Data

. _ Lm.l _ ] ___H \@M_ mn H - _ _____ﬂ
AR a o] ghe s
| : 1 =
-+ H_T : _% Hf |ii Il
5 B 1 = i il
-+ Il i 4 - B
HI|.‘_1£ ﬁ mM w_ r Hw‘_\fﬁ__::__ul..H. Tﬂw _m_
%/:I i =i mmj_o_ o H ( zrm_. ] . EH
W ._; 2 _ww,;.% A= -
-H <5 _l - — ...“.m"-u
ﬂ _mmlﬁ/um ﬂmiw __/Wfl
L e AT TN
72 Tt T IN T _ _J R TN
& . . |
m |Mﬂ|1__ :__,__:_ﬁﬁ r.wp Ha __._:MJW.@M
m .”|1_ __k THHM 1-_|_|fl W - m ..W
O ml _ | . y _ m ..M - ! _ T
i i ﬁwﬁ% = 1 ]
2 mmmﬁf FATI T REIRIN Lol fir
Q SRint | i MHVH | T o
= T N AT il
m l 4 .L ﬁll . B : A/ |
Q lHllIL mw __VH il (HURELHEINDN &
2 PR B e S
& -..Tﬁg T TTTTTIN ] T AT [T TTTIN T
=
YE g

12/52



Compare Reconstructed Roadmaps
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Compare Reconstructed Roadmaps

 How can one measure the quality of constructed maps?
« Surprisingly, there 1s no applicable ground truth map:

— Professional maps

— Do not cover the same area and the same details as a given input set of
trajectories

- L W L4 ‘

==

g

— Compare two immersed graphs
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2. Hausdorff and
Fréechet-Like Distances
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Hausdorft Distance

*Directed Hausdorft distance

5 (A,B) = max min || a-b | %_A

» Undirected Hausdortf-distance 5_H)(B,A) ~
54 (AB) = max (5,(A.B) , 6,(B,A) ) Ou(A-B)
 Can be computed in polynomial time; O(N log N) 1n the plane

comparison, oy only compares the
geometry but not the topology o

* Con: When applied to graph 7 I g

Q
O

* Pro: 5_H> allows for partial comparison 1
of one graph N -
* 5, is a metric on the set of compact subsets of R%
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Metric Properties

Definition 1 (Key Properties of Dissimilarity Functions). Let X be a set. Consider
a function d: X x X — R>(. We define the following properties:

1. Identity: d(x,x) = 0.

2. Symmetry: for all x,y € X, d(x,y) = d(y,x).

3. Separability: for all x,y € X, d(x,y) = 0 implies x = y.

4. Subadditivity (Triangle Inequality): for all x,y,z € X, d(x,y) < d(x,z) +d(z,y).

 Metric: Fulfills 1.-4.

* Directed: Does not fulfill 2.
* Pseudo-metric: 1., 2., 4.

e Semi-metric: 1., 2., 3.

e Quasi-metric: 1., 3., 4.

= (S—H> is a directed pseudo-metric
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Fréchet Distance for Curves

op(f,g) = inf max  |[f(a(t))-g(BO)|
o,B:[0,11+[0,1] t [0,1]

where a and [3 range over continuous monotone increasing
reparameterizations only. « Man and dog walk on

one curve each

* They hold each other at
a

* They are only allowed
to go forward

* O 1s the minimal
possible leash length

[FO6] M. Fréchet, Sur quelques points de calcul fonctionel, Rendiconti del Circolo Mathematico di Palermo 22: 1-74, 1906.
18/52



Free Space Diagram

* Let >0 fixed (eventually solve decision problem)

« F.(f,g)={(s,t)e[0,1]% ||| f(s) - g(t)|| < € } white points
free space of fand g

* The free space 1n one cell 1s an ellipse.
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\ Free Space Diagram

g

e Monotone path encodes reparametrizations of f and g

e On(f,g) <¢ 1iff there 1s a monotone path 1n the free space
from (0,0) to (1,1)

e Such a path can be computed using DP in O(mn) time

20/52



\ Free Space Diagram

1

0

e Monotone path encodes reparametrizations of f and g

e On(f,g) <¢ 1iff there 1s a monotone path 1n the free space
from (0,0) to (1,1)

e Such a path can be computed using DP in O(mn) time
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Weak Fréchet Distance

* Weak Fréchet distance o (f,g): Allow any
continuous reparameterizations o and 3

— Any continuous path 1n free space (not necessarily
monotone)

* oy(f,g) <o,r(f,g) < ok(t,g)
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Map-Matching

Given: A graph G, a curve |, and a distance parameter €.

Task: Find a path 7 in G such that 6.(l,7)<e

Compute free space surface.
And find path " 1n 1t

/J%/

K ZLI

Such a path can be computed using DP in O(mn) time
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Frechet Distance, General

Let A, B € R¥ be two oriented manifolds. And let f:A- R4 and
g: B > R be two immersions. Then

6r(f,9) = infy max,ey|lf (t) — g(a()l,

where a: A — B ranges over all orientation-preserving
homeomorphisms.

e The Frechet distance 1s a pseudo-metric (separability 1s not
fulfilled, since shapes with different parameterizations can have
distance 0).

e Originally defined for oriented manifolds, but can be generalized
even further.

24/52



‘ Fréchet Distance, Immersed Graphs

LetG = (Vg, Eq, 9c) and H = (Vy, Ey, o) be two immersed graphs.

e We can apply the Fréchet distance definition in principle on the
maps ¢, and ¢.

e Drop the ,,orientation-preserving* requirement.

e Equivalent definition:
8r(G,H) = infmax 6z (e, a(e)),

a e€Eg
where a ranges over all edge mappings corresponding to
1Isomorphisms of G and H.
e [s graph-isomorphism hard. Can be computed in poly time for
trees and for graphs of bounded tree-width. [BKN20]

e For planar graphs, can enumerate orientation-preserving
iIsomorphisms in polynomial time. [FW21]

[BKN20] M. Buchin, A. Krivosija, A. Neuhaus. Computing the Fréchet distance of trees and graphs of bounded tree width. EuroCG. 2020
[FW21] P. Fang, C. Wenk. The Fréchet distance for plane graphs. EuroCG 21. 25/52



Path-Based Distance

* Directed Hausdorff distance on path-sets:

QG,H(W(%?TH): Imax min (5F(pg,pH)
PGETG PHETH

° :7T G path-set in G, and 7T g path-set in H

* Asymmetry of distance definition 1s desirable, if Glis a
reconstructed map and H a ground-truth map.

Fréchet distance

[AFHW14] M. Ahmed, B. Fasy, K. Hickmann, C. Wenk, Path-based distance for street map comparison, arXiv:1309.6131, 2014.
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Path-Based Distance

* Ideally, 7T ; and TTpy are the set of all paths in G and H

7@)1{(71’(;,71’[{): max min r(pg,pH)
pGEWG\pHEWH |

. . . f ,
* It 1s a directed pseudo-metric. map-matching

* One can use the set of paths of Vs
link-length three to approximate the
overall distance in polynomial time,
if vertices in G are well-separated 17,
and have degree # 3. Vo
— Stitch link-length three paths
together to form longer paths

[AFHW14] M. Ahmed, B. Fasy, K. Hickmann, C. Wenk, Path-based distance for street map comparison, TSAS 1(1): article 3,
28 pages, 2015. 27/52



Traversal Distance

LetG = (Vg, Eq,9c) and H = (Vy, Ey, @) be two immersed graphs.

e Represent G by traversals f:[0,1] = G (continuous, surjective) and
H by partial traversals g: [0,1] —» H:

dr(G,H) = inf max 1 @) —g@I

g te[0,1]

e (Can be computed in O(mn log mn) time ° °
using free space diagram.

e Is a directed distance, but fulfills neither G H
separability nor triangle imnequality.

e (Concides with the weak Fréchet distance Small traversal distance
when G and H are polygonal curves.

[AERWO3] H. Alt, A. Efrat, G. Rote, C. Wenk, Matching Planar Maps, Journal of Algorithms 49: 262-283, 2003.
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Traversal Distance

G Go G

Fig. 1: Example showing that the traversal distance violates the separability and
triangle inequality. Assume all graphs lie on top of each other, 1.e., G| and G3

are subgraphs of G,. Then a'_T>(G1,G2) — O,d_>T(G2,G3) = w/2, but G| # G, and
dT(Gl,G;?,) =W > w/2.

[AERWO3] H. Alt, A. Efrat, G. Rote, C. Wenk, Matching Planar Maps, Journal of Algorithms 49: 262-283, 2003.
29/52



‘ Strong and Weak Graph Distances

LetG = (Vg, Eq,9c) and H = (Vy, Ey, @) be two immersed graphs.
e Define a graph mapping s: G — H as follows:

e ssendseachv € V; toapoints(v) € H
e s sends each e € E; to a simple path from s(u) to s(v) in H.

e Then the strong graph distance is
g(G,H) = inf max dr(e,s(e))

S:G—-H e€Eg
e The weak graph distance 5_W) uses 0, instead of .

e Wehave d.(G,H) <6,(G,H) <5(G,H)

e NP-hard to decide, but can be computed in poly time for trees, and
the weak graph distance can be computed in poly time for planar
embedded graphs.

[ABKSW21] H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, C. Wenk, Distance Measures for Embedded Graphs, CGTA 95, 101743, 2021.
30/52



Traversal and Graph Distance

Gy G H, Hy L1 |2

Small traversal distance

[ABKSW21] H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, C. Wenk, Distance Measures for Embedded Graphs, CGTA 95, 101743, 2021.
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Traversal and Graph Distance

Gy G H, Hy L1 |2

— 1

°* Small traversal distance ¢ Small traversal distance
* Large graph distance

[ABKSW21] H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, C. Wenk, Distance Measures for Embedded Graphs, CGTA 95, 101743, 2021.
32/52



Traversal and Graph Distance

Gl GQ H] H2 ]l 12

— 1 ! ‘

* Small traversal distance ¢ Small traversal distance * Both small
* Large graph distance * Large graph distance

[ABKSW21] H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, C. Wenk, Distance Measures for Embedded Graphs, CGTA 95, 101743, 2021.
33/52



‘ Strong and Weak Graph Distances

[ABKSW21] H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, C. Wenk, Distance Measures for Embedded Graphs, CGTA 95, 101743, 2021.
34/52



Contour Tree Distance

LetG = (Vg, Eq, 9¢c) and H = (Vy, Ey, @) be two connected
immersed graphs.

e The contour tree distance 1s
dc(G,H) = inf sup |[[x —yll,

T (xy)er
where G ranges over all correspondences 7 between G and H such that
1. 7€ G X H 1s connected
2. Foreach x € G: The set T N ({x} X H) is non-empty and connected
3. Foreachy € H: The set T N (G X {y}) is non-empty and connected

[BOS17] K. Buchin, T. Ophelders, B. Speckmann. Computing the Frechet distance between real-valued surfaces. SODA: 2443-2455, 2017.
35/52



Contour Tree Distance
dc(G,H) = inf sup [lx —y|l,

T (x,y)ert
where G ranges over all correspondences T between G and H such that
1. 7 < G X H 1s connected
2. Foreachx € G: The set t N ({x} X H) is non-empty and connected
3. Foreachy € H: The set T N (G X {y}) is non-empty and connected

£ o . ‘ v 36/52



Contour Tree Distance

e The contour tree distance 1s a metric.
e But it is NP-complete, already for trees.

e This distance seems to correspond to a symmetric version of the
(strong or weak) graph distances.

[BOS17] K. Buchin, T. Ophelders, B. Speckmann. Computing the Frechet distance between real-valued surfaces. SODA: 2443-2455, 2017.
[BKW21] M. Buchin, B. Kilgus, C. Wenk. Ongoing work. 37/52



3. Local Persistent
Homology Distance
and Local Signatures

D @
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Excursion into Computational Topology:
Persistent Homology

* Develop topological descriptors to analyze point set shapes

* It looks like this shape contains two cycles. But how do we know?

* Let’s make the points thicker:

.t

."-'. !

o* ® &

. -K .i- :l
T jll
o tug

Adapted from Tamal Dey’s slides
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‘ Persistent Homology

. N ]
P At
o* ” @
" o e >
.tf L .13_2

* f(x) = d(x, P): distance to point cloud P
* Sublevel sets f 1[0, 7] are union of balls

* Evolution of the sublevel sets with increasing radius r
—> The left hole persists longer

° Growing union of balls are nested topological spaces

= a filtration | I
nested homology classes (groups)

= persistent homology classes (groups)

Adapted from Tamal Dey’s slides
40/52



‘ Persistence Diagram

1;.— o E,HI :;!--‘: :. . . G . :{_
K:"!;/i:\'l%;}- : .: :. . .:_ -.' -

* f(x) = d(x, P): distance to point cloud P
* Sublevel sets f~1[0,7] are union of balls |

* Dgm(f, P) 1s the persistence diagram
of P

* Each point in Dgm(f, P) 1s a pair of
r-values: (birth, death)

* = Topological descriptor of P
Adapted from Tamal Dey’s slides

Death

41/52



Bottleneck Distance

death
oo%* ............................................................

x Dgm;
\\ ® Dgm,
Add the diagonal

Multiplicity: 2

>
0 birth

The bottleneck distance between two diagrams Dgm, and Dgm, is

dp(Dgmy,Dgm,) = inf sup |[p — v(p)|l=
'YEFpEngl

where I' is the set of all the bijections between Dgm; and Dgm, and

||p — qnoo = max(|a:p - 37q|a |3/p - yql)-

. . 42/52
From Gudhi tutorial:



‘ Local Persistent Homology Distance

* Consider a common local
neighborhood of both maps.

* Consider the cycles of each
graph inside this neighborhood.

* Now thicken each graph and
track changes in the cycle structure
using persistent homology

—> Use (bottleneck) distance between persistence diagrams to
compare changing local cycle structure

[AFW14] M. Ahmed, B. Fasy, C. Wenk, Local persistent homology based distance between maps, ACM SIGSPATIAL, 10 pages, 2014.
43/52



‘ Local Persistent Homology Distance

* Local “signature” that captures local topological similarity of
graphs: 1, (58) — d(Pl v P22 r @ @
where d is the bottleneck distance between the

two persistence diagrams

* Fixed radius: | 1
A (G, Gy) = ®/X@br(;c) da

* Local homology metric:

A" (G, Gy) =

1 "
% /. w(fr)/xwr(x)da:dfr

[AFW14] M. Ahmed, B. Fasy, C. Wenk, Local persistent homology based distance between maps, ACM SIGSPATIAL, 10 pages, 2014.
44/52




‘ Local Persistent Homology Distance

* Compared two reconstructed
maps.

* Disk centers sampled Sm;
disk radius 25m

* Local signature captures
different topology (missing
intersections) well

7
J

__/
Local homology = Hausdorff  Path-based (Fréchet)

[AFW14] M. Ahmed, B. Fasy, C. Wenk, Local persistent homology based distance between maps, ACM SIGSPATIAL, 10 pages, 2014.
45/52




4. Other Distances
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Geometric Edit Distance

* Geometric Edit Distance [CGKSS09]
* Defined for straight-line embedded graphs.
* Motivated by Chinese character comparison

* Perform the following edit operations 1n this order:
Edge deletion, vertex deletion,

vertex translation,
vertex insertion, edge insertion Y% / b%

* Costs are proportional to edge

l,‘ P
. ' _T
lengths and to the distance a ~H]]. \k J [~ }T |
‘I‘II L"-‘ II:IIT :. :-‘ ﬂ‘. 4 ;l-"‘-
B EVATE A VAR @94
vertex has been translated. D e/ /E /u

* Is a metric. But NP-hard.

[CGKSS09] O. Cheong, J. Gudmundsson, H.-S. Kim, D. Schymura, F. Stehn, Measuring the similarity of geometric graphs, SEA: 101-112,
2009. 47/52




Shortest Path Sampling Distance

* Shortest Path Sampling Distance [KP12] in R?:
* Randomly sample %,y € R?

* Find nearest neighbors x., y; on G and compute a shortest path
e from x; to y; In G.

* Similarly, compute a shortest 7y from x4 to yy in H.
® COmpute SF (T[G' T[H)'

* Repeat for several random samples, and compare sets of
resulting distances

[KP12] S. Karagiorgou, D. Pfoser, On vehicle-tracking data-based road network generation, 20t ACM SIGPATIAL: 89-98, 2012.
48/52



Point Sampling Distance

* In a local neighborhood of both graphs,
traverse the graphs (from random
seeds) and place point samples.
(Only graph edges of length < 7.)

° 7. match distance threshold
m=m(7): #samples in G
Nn=n(7): #samples in H

k=k(7) = #matched samples (1-1) within distance 7
° Precision: p=k/n Recall: r =k/m F-score: 2pr/(p-+r) = 2k/(n+m)

[BE12b] J. Biagioni, J. Eriksson, Inferring road maps from global... TRR: J. of the Transportation Research Board 2291, 61-71, 2012.
49/52



Fscore

Point Sampling Distance

G = OSM ground-truth: m samples; H = constructed map: n samples
p=k/n

Biagioni and Karagiorgou: F-score decreases, precision increases

— More matched samples (k), more (unmatched) ground-truth samples (m)

Chicago Generated ||Precision value
- ' ‘ ' ' map (for varying matched distance)
S e o * Athens 10 40 70 100
Ahmed 0.265 0.442 0.503 0.579

0451

Biagioni 0.450 0.586 0.662 0.727
Karagiorgou|(|0.343  0.489 0.561 0.647

04r

Berlin 10 40 70 100

Ahmed 0.123 0326 0422 0.4%5
Biagoni 0.239 0510 0.551 0.586

T Karagiorgou||0.294  0.590  0.633  0.649

02 1 Chicago 10 40 70 100

_ Ahmed 0312 0.563 0.658 0.738

Biagioni 0.491 0.699 0.730 0.775
Karagiorgou(|0.602 0.740 0.751 0.801

0.1
0

1 1 | 1 | 1
20 40 60 80 100 120
matched distance in meters ’Z' [
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Point Sampling Distance

* Can also be used as a local distance signature.

* Lacks theoretical foundation but 1s practical.

* Does not work well 1f the reconstructed graph 1s compared with
more a detailed ground-truth graph (e.g., OSM).

* Provides a matching (1-to-1) between a subset of points in G and H

* What is a good matching?
* (Can one define this continuously
(and compute/approximate efficiently)?

&

[BE12b] J. Biagioni, J. Eriksson, Inferring road maps from global... TRR: J. of the Transportation Research Board 2291, 61-71, 2012.
51/52




Conclusion & Discussion

|. We’ve seen a lot of distances for immersed graphs.
* Are they useful in practice? (Noisy input, runtimes)
* What are their mathematical properties? (Metric, topological)

2.

*  An application: Merge multiple road networks [[7
3. Optimize under transformations
4. Local signatures:

* Useful to 1dentify local differences
*  Compute global correspondence from
local correspondences?






