
Efficient Sorting Algorithms

Helmut Alt
Freie Universität Berlin

alt@mi.fu-berlin.de

September 22, 2014

Specification of the Problem

input:
a sequence of numbers (or other objects which can be compared to
each other and sorted)

output:
The same numbers in ascending order (i.e., from smallest to
largest)

Specification of the Problem

input:
a sequence of numbers (or other objects which can be compared to
each other and sorted)

output:
The same numbers in ascending order (i.e., from smallest to
largest)

Specification of the Problem

input:
a sequence of numbers (or other objects which can be compared to
each other and sorted)

output:
The same numbers in ascending order (i.e., from smallest to
largest)

Algorithm 1: a Simple Algorithm

I I go through the sequence from left to right, in each step:
I if the current element is larger than its right neighbor: swap

the two elements

.

Algorithm 1: a Simple Algorithm

I I go through the sequence from left to right, in each step:

I if the current element is larger than its right neighbor: swap
the two elements

.

Algorithm 1: a Simple Algorithm

I I go through the sequence from left to right, in each step:
I if the current element is larger than its right neighbor: swap

the two elements

.

Algorithm 1: a Simple Algorithm

I I go through the sequence from left to right, in each step:
I if the current element is larger than its right neighbor: swap

the two elements

.

Algorithm 1: a Simple Algorithm

I repeat until no more swaps occur:
I go through the sequence from left to right, in each step:

I if the current element is larger than its right neighbor: swap
the two elements

.

Algorithm 1: a Simple Algorithm

I repeat until no more swaps occur:
I go through the sequence from left to right, in each step:

I if the current element is larger than its right neighbor: swap
the two elements

This algorithm is called Bubblesort.

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting 8 numbers:

I One scan makes 7 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most 7 scans

I altogether: at most 49 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting 8 numbers:

I One scan makes 7 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most 7 scans

I altogether: at most 49 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting 8 numbers:

I One scan makes 7 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most 7 scans

I altogether: at most 49 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting 8 numbers:

I One scan makes 7 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most 7 scans

I altogether: at most 49 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting 8 numbers:

I One scan makes 7 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most 7 scans

I altogether: at most 49 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting 8 numbers:

I One scan makes 7 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most 7 scans

I altogether: at most 49 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting 8 numbers:

I One scan makes 7 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most 7 scans

I altogether: at most 49 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting 8 numbers:

I One scan makes 7 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most 7 scans

I altogether: at most 49 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting 8 numbers:

I One scan makes 7 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most 7 scans

I altogether: at most 49 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting n numbers:

I One scan makes 7 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most 7 scans

I altogether: at most 49 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting n numbers:

I One scan makes n − 1 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most 7 scans

I altogether: at most 49 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting n numbers:

I One scan makes n − 1 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most n − 1 scans

I altogether: at most 49 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting n numbers:

I One scan makes n − 1 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most n − 1 scans

I altogether: at most (n − 1)2 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting n numbers:

I One scan makes n − 1 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most n − 1 scans

I altogether: at most (n − 1)2 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:

Runtime Analysis of Bubblesort

We count the number of comparisons the algorithm makes.

Sorting n numbers:

I One scan makes n − 1 comparisons.

I The first scan brings the largest element to the rightmost
position.

I The second scan brings the second largest element to the
second rightmost position.

I etc.

I so: at most n − 1 scans

I altogether: at most (n − 1)2 comparisons

I improvement: make 1st scan for n elements, 2nd for n − 1,
etc.:
n(n − 1)/2 comparisons.

Algorithm 2

1. If the sequence contains only one number, return it
immediately, otherwise:

2. Split the sequence into two parts of equal size. Give each part
to a helper and ask him, to sort it recursively, i.e., also exactly
by the method described here.

3. Wait until both helpers have given back the sorted parts.
Then traverse both sequences from left to right and merge the
cards by a kind of zipper-principle to a sorted full sequence.

4. Return this sequence to your master.

This algorithm is called Mergesort.

Algorithm 2

1. If the sequence contains only one number, return it
immediately, otherwise:

2. Split the sequence into two parts of equal size. Give each part
to a helper and ask him, to sort it recursively, i.e., also exactly
by the method described here.

3. Wait until both helpers have given back the sorted parts.
Then traverse both sequences from left to right and merge the
cards by a kind of zipper-principle to a sorted full sequence.

4. Return this sequence to your master.

This algorithm is called Mergesort.

Algorithm 2

1. If the sequence contains only one number, return it
immediately, otherwise:

2. Split the sequence into two parts of equal size. Give each part
to a helper and ask him, to sort it recursively, i.e., also exactly
by the method described here.

3. Wait until both helpers have given back the sorted parts.
Then traverse both sequences from left to right and merge the
cards by a kind of zipper-principle to a sorted full sequence.

4. Return this sequence to your master.

This algorithm is called Mergesort.

Algorithm 2

1. If the sequence contains only one number, return it
immediately, otherwise:

2. Split the sequence into two parts of equal size. Give each part
to a helper and ask him, to sort it recursively, i.e., also exactly
by the method described here.

3. Wait until both helpers have given back the sorted parts.
Then traverse both sequences from left to right and merge the
cards by a kind of zipper-principle to a sorted full sequence.

4. Return this sequence to your master.

This algorithm is called Mergesort.

Algorithm 2

1. If the sequence contains only one number, return it
immediately, otherwise:

2. Split the sequence into two parts of equal size. Give each part
to a helper and ask him, to sort it recursively, i.e., also exactly
by the method described here.

3. Wait until both helpers have given back the sorted parts.
Then traverse both sequences from left to right and merge the
cards by a kind of zipper-principle to a sorted full sequence.

4. Return this sequence to your master.

This algorithm is called Mergesort.

Algorithm 2

1. If the sequence contains only one number, return it
immediately, otherwise:

2. Split the sequence into two parts of equal size. Give each part
to a helper and ask him, to sort it recursively, i.e., also exactly
by the method described here.

3. Wait until both helpers have given back the sorted parts.
Then traverse both sequences from left to right and merge the
cards by a kind of zipper-principle to a sorted full sequence.

4. Return this sequence to your master.

This algorithm is called Mergesort.

Divide-and-Conquer

The strategy used in Mergesort:

1. If the problem size is small enough: solve directly, otherwise:

2. Split the problem into several subproblems of smaller size and
solve those recursively.

3. Combine the solutions of the subproblems to one of the
complete problem.

Divide-and-Conquer

The strategy used in Mergesort:

1. If the problem size is small enough: solve directly, otherwise:

2. Split the problem into several subproblems of smaller size and
solve those recursively.

3. Combine the solutions of the subproblems to one of the
complete problem.

Divide-and-Conquer

The strategy used in Mergesort:

1. If the problem size is small enough: solve directly, otherwise:

2. Split the problem into several subproblems of smaller size and
solve those recursively.

3. Combine the solutions of the subproblems to one of the
complete problem.

Divide-and-Conquer

The strategy used in Mergesort:

1. If the problem size is small enough: solve directly, otherwise:

2. Split the problem into several subproblems of smaller size and
solve those recursively.

3. Combine the solutions of the subproblems to one of the
complete problem.

Algorithm 3

1. If the sequence consists of one element only then return it
immediately, otherwise:

2. Take the first card from the sequence. Go through the
remaining cards and split them into the ones with a value
notgreater than the one of the first card (sequence 1) and the
ones with a value greater than the one of the first card
(sequence 2).

3. Give each sequence obtained this way, if it contains cards at
all, to a helper asking him to sort it recursively, i.e., also
exactly by the method described here.

4. Wait until both helpers have returned the sorted parts then
put at the left the sorted sequence 1, then the card drawn in
the beginning, then the sorted sequence 2, and return the
whole as a sorted sequence.

This algorithm is called Quicksort.

Algorithm 3

1. If the sequence consists of one element only then return it
immediately, otherwise:

2. Take the first card from the sequence. Go through the
remaining cards and split them into the ones with a value
notgreater than the one of the first card (sequence 1) and the
ones with a value greater than the one of the first card
(sequence 2).

3. Give each sequence obtained this way, if it contains cards at
all, to a helper asking him to sort it recursively, i.e., also
exactly by the method described here.

4. Wait until both helpers have returned the sorted parts then
put at the left the sorted sequence 1, then the card drawn in
the beginning, then the sorted sequence 2, and return the
whole as a sorted sequence.

This algorithm is called Quicksort.

Algorithm 3

1. If the sequence consists of one element only then return it
immediately, otherwise:

2. Take the first card from the sequence. Go through the
remaining cards and split them into the ones with a value
notgreater than the one of the first card (sequence 1) and the
ones with a value greater than the one of the first card
(sequence 2).

3. Give each sequence obtained this way, if it contains cards at
all, to a helper asking him to sort it recursively, i.e., also
exactly by the method described here.

4. Wait until both helpers have returned the sorted parts then
put at the left the sorted sequence 1, then the card drawn in
the beginning, then the sorted sequence 2, and return the
whole as a sorted sequence.

This algorithm is called Quicksort.

Algorithm 3

1. If the sequence consists of one element only then return it
immediately, otherwise:

2. Take the first card from the sequence. Go through the
remaining cards and split them into the ones with a value
notgreater than the one of the first card (sequence 1) and the
ones with a value greater than the one of the first card
(sequence 2).

3. Give each sequence obtained this way, if it contains cards at
all, to a helper asking him to sort it recursively, i.e., also
exactly by the method described here.

4. Wait until both helpers have returned the sorted parts then
put at the left the sorted sequence 1, then the card drawn in
the beginning, then the sorted sequence 2, and return the
whole as a sorted sequence.

This algorithm is called Quicksort.

Algorithm 3

1. If the sequence consists of one element only then return it
immediately, otherwise:

2. Take the first card from the sequence. Go through the
remaining cards and split them into the ones with a value
notgreater than the one of the first card (sequence 1) and the
ones with a value greater than the one of the first card
(sequence 2).

3. Give each sequence obtained this way, if it contains cards at
all, to a helper asking him to sort it recursively, i.e., also
exactly by the method described here.

4. Wait until both helpers have returned the sorted parts then
put at the left the sorted sequence 1, then the card drawn in
the beginning, then the sorted sequence 2, and return the
whole as a sorted sequence.

This algorithm is called Quicksort.

Algorithm 3

1. If the sequence consists of one element only then return it
immediately, otherwise:

2. Take the first card from the sequence. Go through the
remaining cards and split them into the ones with a value
notgreater than the one of the first card (sequence 1) and the
ones with a value greater than the one of the first card
(sequence 2).

3. Give each sequence obtained this way, if it contains cards at
all, to a helper asking him to sort it recursively, i.e., also
exactly by the method described here.

4. Wait until both helpers have returned the sorted parts then
put at the left the sorted sequence 1, then the card drawn in
the beginning, then the sorted sequence 2, and return the
whole as a sorted sequence.

This algorithm is called Quicksort.

Experimental comparison of the sorting algorithms
Runtime of an implementation in milliseconds for different sizes of
the input sequence.

 0

 100

 200

 300

 400

 500

 600

 0 20000 40000 60000 80000 100000 120000 140000 160000

m
s

n

"Einfsort"
"Quicksort"
"Mergesort"

Remarks

I The sorting algorithms presented cannot only sort numbers
but any kind of objects where one can be compared to
another, e.g., names by alphabetic order, packages by weight
using a balance scale,...

I Recursion is an important tool in algorithm design and
available in most high level programming languages. (Not in
Scratch, though.)

I An algorithm can be formulated in a natural language and
even (roughly) analyzed if described in this manner. An
explicit program is not necessary: difference between
algorithm design and programming.

I There are large differences in the runtimes of different sorting
algorithms. A careful runtime analysis already when designing
an algorithm makes sense.

Remarks

I The sorting algorithms presented cannot only sort numbers
but any kind of objects where one can be compared to
another, e.g., names by alphabetic order, packages by weight
using a balance scale,...

I Recursion is an important tool in algorithm design and
available in most high level programming languages. (Not in
Scratch, though.)

I An algorithm can be formulated in a natural language and
even (roughly) analyzed if described in this manner. An
explicit program is not necessary: difference between
algorithm design and programming.

I There are large differences in the runtimes of different sorting
algorithms. A careful runtime analysis already when designing
an algorithm makes sense.

Remarks

I The sorting algorithms presented cannot only sort numbers
but any kind of objects where one can be compared to
another, e.g., names by alphabetic order, packages by weight
using a balance scale,...

I Recursion is an important tool in algorithm design and
available in most high level programming languages. (Not in
Scratch, though.)

I An algorithm can be formulated in a natural language and
even (roughly) analyzed if described in this manner. An
explicit program is not necessary: difference between
algorithm design and programming.

I There are large differences in the runtimes of different sorting
algorithms. A careful runtime analysis already when designing
an algorithm makes sense.

Remarks

I The sorting algorithms presented cannot only sort numbers
but any kind of objects where one can be compared to
another, e.g., names by alphabetic order, packages by weight
using a balance scale,...

I Recursion is an important tool in algorithm design and
available in most high level programming languages. (Not in
Scratch, though.)

I An algorithm can be formulated in a natural language and
even (roughly) analyzed if described in this manner. An
explicit program is not necessary: difference between
algorithm design and programming.

I There are large differences in the runtimes of different sorting
algorithms. A careful runtime analysis already when designing
an algorithm makes sense.

Remarks

I The sorting algorithms presented cannot only sort numbers
but any kind of objects where one can be compared to
another, e.g., names by alphabetic order, packages by weight
using a balance scale,...

I Recursion is an important tool in algorithm design and
available in most high level programming languages. (Not in
Scratch, though.)

I An algorithm can be formulated in a natural language and
even (roughly) analyzed if described in this manner. An
explicit program is not necessary: difference between
algorithm design and programming.

I There are large differences in the runtimes of different sorting
algorithms. A careful runtime analysis already when designing
an algorithm makes sense.

Links

I Visual comparison of sorting algorithms
http://www.sorting-algorithms.com/

I Acoustic demonstration of sorting algorithms
http://www.youtube.com/watch?v=kPRA0W1kECg

I Sorting algorithms demonstrated by folk dances
I Bubblesort

http://www.youtube.com/watch?v=lyZQPjUT5B4
I Mergesort

http://www.youtube.com/watch?v=XaqR3G_NVoo
I Quicksort

http://www.youtube.com/watch?v=ywWBy6J5gz8

I Demo in Scratch
http://scratch.mit.edu/projects/682862/

http://www.sorting-algorithms.com/
http://www.youtube.com/watch?v=kPRA0W1kECg
http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.youtube.com/watch?v=XaqR3G_NVoo
http://www.youtube.com/watch?v=ywWBy6J5gz8
http://scratch.mit.edu/projects/682862/

Homework

1. Sort the following sequence of 3-letter words alphabetically by
Bubblesort, Mergesort, and Quicksort:
JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT,
NOV, DEC.

2. Give a recursive algorithm for the selection problem specified
as follows:
Given an unsorted sequence of numbers (or other comparable
elements) and a number k, find the k-th smallest element in
the sequence, i.e., the one that occurs at the k-th position
from the left, if the input sequence is sorted.
For example, the 4th smallest element in the sequence of
exercise 1 would be FEB.
Don’t use sorting, but find a more efficient algorithm.
Demonstrate your algorithm with an example.
Hint: The idea of splitting the input sequence as in Quicksort
may be used, then one recursive call to a smaller subsequence
gives the result.

