
9/1/10 CS 6463: AT Computational Geometry 1

CS 6463: AT Computational Geometry
Fall 2010

Plane Sweep Algorithms
and Segment Intersection

Carola Wenk

9/1/10 CS 6463: AT Computational Geometry 2

Closest Pair

• Problem: Given P⊆R2, |P|=n, find the distance
between the closest pair in P

9/1/10 CS 6463: AT Computational Geometry 3

Plane Sweep: An Algorithm
Design Technique

• Simulate sweeping a vertical line from left to right across the plane.
• Maintain cleanliness property: At any point in time, to the left of sweep

line everything is clean, i.e., properly processed.
• Sweep line status: Store information along sweep line
• Events: Discrete points in time when sweep line status needs to be

updated

9/1/10 CS 6463: AT Computational Geometry 4

Plane Sweep: An Algorithm
Design Technique

• Simulate sweeping a vertical line from left to right across the plane.
• Maintain cleanliness property: At any point in time, to the left of sweep

line everything is clean, i.e., properly processed.
• Sweep line status: Store information along sweep line
• Events: Discrete points in time when sweep line status needs to be

updated

Algorithm Generic_Plane_Sweep:

Initialize sweep line status S at time x=-∞
Store initial events in event queue Q, a priority queue ordered by x-coordinate
while Q ≠ ∅

// extract next event e:
e = Q.extractMin();
// handle event:
Update sweep line status
Discover new upcoming events and insert them into Q

9/1/10 CS 6463: AT Computational Geometry 5

Plane sweep for
Closest Pair

• Problem: Given P⊆R2, |P|=n, find the distance of
the closest pair in P

• Sweep line status:
– Store current distance ∆ of closest pair of points to the

left of sweep line
– Store points in ∆-strip left of sweep line
– Store pointer to leftmost point in strip

• Events: All points in P. No new events will be
added during the sweep.
→ Presort P by x-coordinate.

Cleanliness property

9/1/10 CS 6463: AT Computational Geometry 6

Plane sweep for
Closest Pair, II

• Presort P by x-coordinate
• How to store points in ∆-strip?

– Store points in ∆-strip left of sweep line in a balanced binary search tree,
ordered by y-coordinate
→ Add point, delete point, and search in O(log n) time

• Event handling:
– New event: Sweep line advances to point p∈P
– Update sweep line status:

• Delete points outside ∆-strip from search tree by using previous leftmost point in
strip and x-order on P

• Compute candidate points that may have distance ≤ ∆ from p:
– Perform a search in the search tree to find points in ∆–strip whose y-

coordinates are at most ∆ away from p.y.
→ ∆ x 2∆ box

– Because of the cleanliness property each pair of these points has distance ≤∆.
→ A ∆ x 2∆ box can contain at most 6 such points.

• Check distance of these points to p, and possibly update ∆
– No new events necessary to discover

O(n log n)

O(n log n) total

O(n log n + 6n) total

O(6n) total

Total runtime: O(n log n)

∆

∆

∆

9/1/10 CS 6463: AT Computational Geometry 7

Balanced Binary Search Tree
-- a bit different

11

66 88 1212 1414

1717

2626 3535 4141 4242

4343

5959 6161

key[x] is the maximum key of any leaf in the left subtree of x.

9/1/10 CS 6463: AT Computational Geometry 8

121211

66 88 1212 1414

1717

2626 3535 4141 4242

4343

5959 6161

66 2626 4141 5959

11 1414 3535 4343

424288

1717
xx

≤ x > x

Balanced Binary Search Tree
-- a bit different

key[x] is the maximum key of any leaf in the left subtree of x.

9/1/10 CS 6463: AT Computational Geometry 9

1212

88 1212 1414

1717

2626 3535 4141

2626

1414

11

66 4242

4343

5959 6161

66 4141 5959

11

1212

88 1212 1414

1717

2626 3535 4141

2626

1414 3535 4343

424288

1717

RANGE-QUERY([7, 41])

xx

≤ x > x

Balanced Binary Search Tree
-- a bit different

9/1/10 CS 6463: AT Computational Geometry 10

Plane Sweep: An Algorithm
Design Technique

• Plane sweep algorithms (also called sweep
line algorithms) are a special kind of
incremental algorithms

• Their correctness follows inductively by
maintaining the cleanliness property

• Common runtimes in the plane are O(n log n):
– n events are processed
– Update of sweep line status takes O(log n)
– Update of event queue: O(log n) per event

9/1/10 CS 6463: AT Computational Geometry 11

Geometric Intersections

• Important and basic problem in Computational
Geometry

• Solid modeling: Build shapes by applying set
operations (intersection, union).

• Robotics: Collision detection and avoidance
• Geographic information systems: Overlay two

subdivisions (e.g., road network and river
network)

• Computer graphics: Ray shooting to render scenes

9/1/10 CS 6463: AT Computational Geometry 12

Line Segment Intersection

• Input: A set S={s1, …, sn} of (closed) line
segments in R2

• Output: All intersection points between segments
in S

9/1/10 CS 6463: AT Computational Geometry 13

Line Segment Intersection

• n line segments can intersect as few as 0 and as many as
=O(n2) times

• Simple algorithm: Try out all pairs of line segments
→ Takes O(n2) time
→ Is optimal in worst case

• Challenge: Develop an output-sensitive algorithm
– Runtime depends on size k of the output
– Here: 0 ≤ k ≤ c n2 , where c is a constant
– Our algorithm will have runtime: O((n+k) log n)
– Best possible runtime: O(n log n + k)
→ O(n2) in worst case, but better in general

n
2

9/1/10 CS 6463: AT Computational Geometry 14

Complexity

• Why is runtime O(n log n + k) optimal?
• The element uniqueness problem requires Ω(n log n) time

in algebraic decision tree model of computation (Ben-Or ’83)
• Element uniqueness: Given n real numbers, are all of them

distinct?
• Solve element uniqueness using line segment

intersection:
– Take n numbers, convert into vertical line segments. There is an

intersection iff there are duplicate numbers.
– If we could solve line segment intersection in o(n log n) time, i.e.,

strictly faster than Θ(n log n), then element uniqueness could be
solved faster. Contradiction.

9/1/10 CS 6463: AT Computational Geometry 15

Intersection of two line segments

• Two line segments ab and cd
• Write in terms of convex combinations:

p(s) = (1-s) a + s b for 0 ≤ s ≤ 1
q(t) = (1-t) c + t d for 0 ≤ t ≤ 1
Intersection if p(s)=q(t)

⇒Equation system
(1-s) ax + s bx = (1-t) cx + t dx
(1-s) ay + s by = (1-t) cy + t dy

• Solve for s and t. In division, if divisor = 0 then line segments
are parallel (or collinear). Otherwise get rational numbers for s
and t. Either use floating point arithmetic or exact arithmetic.

9/1/10 CS 6463: AT Computational Geometry 16

Plane sweep
algorithm

• Cleanliness property:
– All intersections to the left of sweep line l have been

reported
• Sweep line status:

– Store segments that intersect the sweep line l, ordered along
the intersection with l .

• Events:
– Points in time when sweep line status changes

combinatorially (i.e., the order of segments intersecting l
changes)

→ Endpoints of segments (insert in beginning)
→ Intersection points (compute on the fly during plane sweep)

9/1/10 CS 6463: AT Computational Geometry 17

General position

Assume that “nasty” special cases don’t happen:
– No line segment is vertical
– Two segments intersect in at most one point
– No three segments intersect in a common point

9/1/10 CS 6463: AT Computational Geometry 18

Event Queue

• Need to keep events sorted:
– Lexicographic order (first by x-coordinate, and if two events

have same x-coordinate then by y-coordinate)
• Need to be able to remove next point, and insert new

points in O(log n) time
• Need to make sure not to process same event twice
⇒ Use a priority queue (heap), and possibly extract

multiples
⇒ Or, use balanced binary search tree

9/1/10 CS 6463: AT Computational Geometry 19

Sweep Line Status
• Store segments that intersect the sweep line l, ordered along the

intersection with l .
• Need to insert, delete, and find adjacent neighbor in O(log n) time
• Use balanced binary search tree, storing the order in which

segments intersect l in leaves

b
c

de

c
b
e
d

9/1/10 CS 6463: AT Computational Geometry 20

Event Handling
1. Left segment endpoint

– Add segment to sweep line status
– Test adjacent segments on sweep line l for intersection with new

segment (see Lemma)
– Add new intersection points to event queue

a

b
c

de

c
b
d

c
b
e
d

9/1/10 CS 6463: AT Computational Geometry 21

Event Handling
2. Intersection point

– Report new intersection point
– Two segments change order along l

→ Test new adjacent segments for new intersection points (to
insert into event queue)

a

b
c

de

c
e
b
d

c
b
e
d

Note: “new” intersection
might have been already
detected earlier.

9/1/10 CS 6463: AT Computational Geometry 22

Event Handling
3. Right segment endpoint

– Delete segment from sweep line status
– Two segments become adjacent. Check for intersection points (to

insert in event queue)

a

b
c

de

e
c
b
d

e
c
d

9/1/10 CS 6463: AT Computational Geometry 23

Intersection Lemma

• Lemma: Let s, s’ be two non-vertical segments whose
interiors intersect in a single point p. Assume there is no
third segment passing through p. Then there is an event
point to the left of p where s and s’ become adjacent (and
hence are tested for intersection).

• Proof: Consider placement of sweep line infinitesimally
left of p. s and s’ are adjacent along sweep line. Hence
there must have been a previous event point where s and
s’ become adjacent.

p
s

s’

9/1/10 CS 6463: AT Computational Geometry 24

Runtime

• Sweep line status updates: O(log n)
• Event queue operations: O(log n), as the total

number of stored events is ≤ 2n + k, and each
operation takes time
O(log(2n+k)) = O(log n2) = O(log n)

• There are O(n+k) events. Hence the total runtime
is O((n+k) log n)

k = O(n2)

