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Orthogonal range searchingg g g

Input: n points in d dimensionsp p
• E.g., representing a database of n records

each with d numeric fields
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box:Report on the points inside the box: 
• Are there any points?
• How many are there?How many are there?
• List the points.
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Orthogonal range searchingg g g

Input: n points in d dimensionsp p
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the boxReport on the points inside the box
Goal: Preprocess points into a data structure

to support fast queriesto support fast queries
• Primary goal: Static data structure
• In 1D we will also obtain a• In 1D, we will also obtain a
dynamic data structure
supporting insert and delete

310/20/10 CS 6463 AT: Computational Geometry

supporting insert and delete



1D range searchingg g
In 1D, the query is an interval:

First solution:First solution:
• Sort the points and store them in an array

• Solve query by binary search on endpoints• Solve query by binary search on endpoints.
• Obtain a static structure that can list
k answers in a query in O(k + log n) timek answers in a query in O(k + log n) time.

Goal: Obtain a dynamic structure that can list
k i i O(k + l ) ti
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k answers in a query in O(k + log n) time.



1D range searchingg g
In 1D, the query is an interval:

New solution that extends to higher dimensions:New solution that extends to higher dimensions:
• Balanced binary search tree

• New organization principle:New organization principle:
Store points in the leaves of the tree.

• Internal nodes store copies of the leavesInternal nodes store copies of the leaves
to satisfy binary search property:

• Node x stores in key[x] the maximum
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Node x stores in key[x] the maximum
key of any leaf in the left subtree of x.



Example of a 1D range treep g

1 17 43

6 8 12 14 26 35 41 42 59 61
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key[x] is the maximum key of any leaf in the left subtree of x.



Example of a 1D range treep g
17

x

428
≤ x > x

1 14 35 43

121 17 436 26 41 59

6 8 12 14 26 35 41 42 59 61
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key[x] is the maximum key of any leaf in the left subtree of x.



Example of a 1D range queryp g q y
17

x

428
≤ x > x

141 14 35 43

12 17 261 436 41 5912 17 26

8 12 14 26 35 416 42 59 618 12 14 26 35 41
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RANGE-QUERY([7, 41])



General 1D range queryg q y
root

split node
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Pseudocode, part 1:
Find the split nodeFind the split node

1D-RANGE-QUERY(T, [x1, x2])
w ← root[T]w ← root[T]
while w is not a leaf  and  (x2 ≤ key[w] or key[w] < x1)

do if x2 ≤ key[w]
l f [ ]then w ← left[w]

else  w ← right[w]
// w is now the split nodep
[traverse left and right from w and report relevant subtrees]
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Pseudocode, part 2: Traverse 
left and right from split nodeleft and right from split node

1D-RANGE-QUERY(T, [x1, x2])
[find the split node][find the split node]
// w is now the split node
if w is a leaf

h l f if k [ ]then output the leaf w if x1 ≤ key[w] ≤ x2
else  v ← left[w] // Left traversal

while v is not a leaf
do if x1 ≤ key[v] 

then output the subtree rooted at right[v]
v ← left[v]v ← left[v]

else  v ← right[v]
output the leaf v if x1 ≤ key[v] ≤ x2
[ i ll f i h l]

w
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[symmetrically for right traversal]



Analysis of 1D-RANGE-QUERYy Q
Query time: Answer to range query represented
b O(log ) s btrees fo nd in O(log ) timeby O(log n) subtrees found in O(log n) time.
Thus:

• Can test for points in inter al in O(log ) time• Can test for points in interval in O(log n) time.
• Can report all k points in interval in 

O(k + log n) timeO(k + log n) time.
• Can count points in interval in

O(log n) timeO(log n) time
Space: O(n)
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Preprocessing time: O(n log n)



2D range treesg
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2D range trees
Store a primary 1D range tree for all the points
based on coordinate

g

based on x-coordinate.
Thus in O(log n) time we can find O(log n) subtrees

ti th i t ith di trepresenting the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?
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2D range treesg
Idea: In primary 1D range tree of x-coordinate,
e er node stores a d 1D range treeevery node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node Rec rsi el search ithin eachof the node.  Recursively search within each.
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2D range tree exampleg p

5/8 5/8

Secondary trees
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Primary tree
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Primary tree



Analysis of 2D range treesy g
Query time: In O(log2 n) = O((log n)2) time, we can

t t b O(l 2 ) btrepresent answer to range query by O(log2 n) subtrees.
Total cost for reporting k points: O(k + (log n)2).

Space: The secondary trees at each level of the
primary tree together store a copy of the pointsprimary tree together store a copy of the points.
Also, each point is present in each secondary
tree along the path from the leaf to the root

P i ti O( l )

tree along the path from the leaf to the root.
Either way, we obtain that the space is O(n log n).
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Preprocessing time: O(n log n)



d-dimensional range treesg
Each node of the secondary 

iy-structure stores a tertiary 
z-structure representing the points in the subtree 

d h drooted at the node, etc. Save one log factor using 
fractional cascading

Query time: O(k + logd n) to report k points.
Space: O(n logd – 1 n)
P i i O( l d 1 )Preprocessing time: O(n logd – 1 n)
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Search in Subsets
Given: Two sorted arrays A1 and A, with A1⊆A

A query interval [l,r]q y [ , ]
Task: Report all elements e in A1 and A with l ≤ e ≤ r
Idea: Add pointers from A to A1:

→ For each a∈A add a pointer to the→ For each a∈A add a pointer to the 
smallest element b∈ A1 with b≥a

Query: Find l∈A, follow pointer to A1. Both in A and A1Q y , p 1 1
sequentially output all elements in [l,r].

3  10  19  23  30  37  59  62  80  90Query: A

10  19  30  62 80
[15,40]

A1
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Runtime: O((log n + k) + (1 + k)) = O(log n + k))



Search in Subsets (cont.)( )
Given: Three sorted arrays A1, A2, and A, 

with A1⊆A and A2⊆A1 ⊆ 2⊆

3  10  19  23  30  37  59  62  80  90Query:
[15 40]

A

10  19  30  62 80
[15,40]

A1
3  23  37  62 90A2

R ti O((l k) (1 k) (1 k)) O(l k))Runtime: O((log n + k) + (1+k) + (1+k)) = O(log n + k))

Range trees:

Y1∪Y2
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X

Y1 Y2



Fractional Cascading: 
Layered Range TreeLayered Range Tree

R l 2D tReplace 2D range tree 
with a layered range 
tree, using sorted , g
arrays and pointers 
instead of the 
secondary range treessecondary range trees.

Preprocessing: p g
O(n log n)

Query: 
O(log n + k)
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O(log n + k)



d-dimensional range treesg

Query time: O(k + logd-1 n) to report k points,Q y ( g ) p p ,
uses fractional cascading in the 
last dimension

Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Best data structure to date:
Query time: O(k + logd – 1 n) to report k points.
Space: O(n (log n / log log n)d – 1)
P i ti O( l d 1 )
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Preprocessing time: O(n logd – 1 n)



Windowingg

Input: A set S of n line segments in the planep g p
Query: Report all segments in S that
intersect a given query windowintersect a given query window

Subproblem: Process a set of intervals on the lineSubproblem: Process a set of intervals on the line
into a data structure which supports queries of the
type: Report all intervals that contain a query point
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type: Report all intervals that contain a query point.



Interval trees
Goal: To maintain a dynamic set of intervals, 
s ch as time inter alssuch as time intervals.

i = [7, 10]

low[i] = 7 10 = high[i]

[ , ]

5 1711 195
4 15 22

1711
8 18

19
23

Query: For a given query interval i, find an 
interval in the set that overlaps i.
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Following the methodologyg gy

1. Choose an underlying data structure.
• Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be 
stored in the data structure.
• Store in each node x the interval int[x]

di t th k ll thcorresponding to the key, as well as the 
largest value m[x] of all right interval 
endpoints stored in the subtree rooted at x

int
endpoints stored in the subtree rooted at x.
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m



Example interval tree
int
m
int
mp

17,1917,19
23d

5,11
18

22,2322,23
23

red

18

4,8
8

15,1815,18
18

23

8 18

7,10
10

m[x] = max
high[int[x]]
m[left[x]]
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10
[ ] [ f [ ]]

m[right[x]]



Modifying operationsy g p
3. Verify that this information can be maintained 

for modifying operationsfor modifying operations.
• INSERT: Fix m’s on the way down.
• Rotations — Fixup = O(1) time per rotation:

6,20
30

11,1511,15
30

p ( ) p

11,1511,15
1930

6,20
30 19

191430 14
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Total INSERT time = O(log n); DELETE similar.



New operationsp
4. Develop new dynamic-set operations that use 

the informationthe information.
INTERVAL-SEARCH(i)

x ← rootx ← root
while x ≠ NIL and (low[i] > high[int[x]] 

or low[int[x]] > high[i])or low[int[x]]  high[i])
do i and int[x] don’t overlap

if left[x] ≠ NIL and low[i] ≤ m[left[x]]
then x ← left[x]
else x ← right[x]

t
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return x



Example 1: INTERVAL-SEARCH([14,16])p ( )

17,1917,19
23

x
14 1623

5,11
18

22,2322,23
23

14 16

18

4,8
8

15,1815,18
18

23

8 18

7,10
10 x ← root10 x ← root

[14,16] and [17,19] don’t overlap
14 ≤ 18 ⇒ ← l ft[ ]
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14 ≤ 18 ⇒ x ← left[x]



Example 1: INTERVAL-SEARCH([14,16])p ( )

17,1917,19
23 14 1623

5,11
18

22,2322,23
23

x

14 16

18

4,8
8

15,1815,18
18

23

8 18

7,10
1010

[14,16] and [5,11] don’t overlap
14 > 8 ⇒ ← i ht[ ]
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14 > 8 ⇒ x ← right[x]



Example 1: INTERVAL-SEARCH([14,16])p ( )

17,1917,19
23 14 1623

5,11
18

22,2322,23
23

14 16

18

4,8
8

15,1815,18
18

23

x8 18

7,10
1010

[14,16] and [15,18] overlap
t [15 18]
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return [15,18]



Example 2: INTERVAL-SEARCH([12,14])p ( )

17,1917,19
23

x
12 1423

5,11
18

22,2322,23
23

12 14

18

4,8
8

15,1815,18
18

23

8 18

7,10
10 x ← root10 x ← root

[12,14] and [17,19] don’t overlap
12 ≤ 18 ⇒ ← l ft[ ]
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12 ≤ 18 ⇒ x ← left[x]



Example 2: INTERVAL-SEARCH([12,14])p ( )

17,1917,19
23 12 1423

5,11
18

22,2322,23
23

x

12 14

18

4,8
8

15,1815,18
18

23

8 18

7,10
1010

[12,14] and [5,11] don’t overlap
12 > 8 ⇒ ← i ht[ ]
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12 > 8 ⇒ x ← right[x]



Example 2: INTERVAL-SEARCH([12,14])p ( )

17,1917,19
23 12 1423

5,11
18

22,2322,23
23

12 14

18

4,8
8

15,1815,18
18

23

x8 18

7,10
1010

[12,14] and [15,18] don’t overlap
12 > 10 ⇒ ← i ht[ ]
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12 > 10 ⇒ x ← right[x]



Example 2: INTERVAL-SEARCH([12,14])p ( )

17,1917,19
23 12 1423

5,11
18

22,2322,23
23

12 14

18

4,8
8

15,1815,18
18

23

8 18

7,10
10

x
10

x = NIL ⇒ no interval that 
overlaps [12 14] exists
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overlaps [12,14] exists



Analysisy
Time = O(h) = O(log n), since INTERVAL-
SEARCH does constant work at each level as itSEARCH does constant work at each level as it 
follows a simple path down the tree.
Li ll l i i lList all overlapping intervals:
• Search, list, delete, repeat.

I h ll i h d• Insert them all again at the end.
Time = O(k log n), where k is the total number 
of overlapping intervals
This is an output-sensitive bound.
of overlapping intervals.
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Best algorithm to date: O(k + log n).



Correctness
Theorem.  Let L be the set of intervals in the 
left subtree of node x and let R be the set ofleft subtree of node x, and let R be the set of 
intervals in x’s right subtree.
• If the search goes right, thenIf the search goes right, then

{ i ′ ∈ L : i ′ overlaps i } = ∅.
• If the search goes left, thenIf the search goes left, then

{i ′ ∈ L : i ′ overlaps i } = ∅
⇒ {i ′ ∈ R : i ′ overlaps i } = ∅.{ p }

In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something, 
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f f g
or nothing was to be found.



Correctness proofp
Proof. Suppose first that the search goes right.  

If l f [ ] NIL th ’ d i L ∅• If left[x] = NIL, then we’re done, since L = ∅. 
• Otherwise, the code dictates that we must have 

l [i] > [l ft[ ]] Th l [l ft[ ]]low[i] > m[left[x]].  The value m[left[x]]
corresponds to the right endpoint of some 
interval j ∈ L and no other interval in L caninterval j ∈ L, and no other interval in L can 
have a larger right endpoint than high( j).

iL
high( j) = m[left[x]]

i
low(i)
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• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅.



Proof (continued)( )
Suppose that the search goes left, and assume that

{i ′ ∈ L : i ′ overlaps i } = ∅{i ∈ L : i overlaps i }  ∅.
• Then, the code dictates that low[i] ≤ m[left[x]] = 

high[ j] for some j ∈ L.high[ j] o so e j
• Since  j ∈ L, it does not overlap i, and hence 

high[i] < low[ j].g [ ] [ j]
• But, the binary-search-tree property implies that 

for all i ′ ∈ R, we have low[ j] ≤ low[i ′].
• But then {i ′ ∈ R : i ′ overlaps i } = ∅.

i j
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Li ′


