
CS 6463 -- Fall 2010

Range Searching and Windowing
Carola Wenk

110/20/10 CS 6463 AT: Computational Geometry

Orthogonal range searchingg g g

Input: n points in d dimensionsp p
• E.g., representing a database of n records

each with d numeric fields
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box:Report on the points inside the box:
• Are there any points?
• How many are there?How many are there?
• List the points.

210/20/10 CS 6463 AT: Computational Geometry

Orthogonal range searchingg g g

Input: n points in d dimensionsp p
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the boxReport on the points inside the box
Goal: Preprocess points into a data structure

to support fast queriesto support fast queries
• Primary goal: Static data structure
• In 1D we will also obtain a• In 1D, we will also obtain a
dynamic data structure
supporting insert and delete

310/20/10 CS 6463 AT: Computational Geometry

supporting insert and delete

1D range searchingg g
In 1D, the query is an interval:

First solution:First solution:
• Sort the points and store them in an array

• Solve query by binary search on endpoints• Solve query by binary search on endpoints.
• Obtain a static structure that can list
k answers in a query in O(k + log n) timek answers in a query in O(k + log n) time.

Goal: Obtain a dynamic structure that can list
k i i O(k + l) ti

410/20/10 CS 6463 AT: Computational Geometry

k answers in a query in O(k + log n) time.

1D range searchingg g
In 1D, the query is an interval:

New solution that extends to higher dimensions:New solution that extends to higher dimensions:
• Balanced binary search tree

• New organization principle:New organization principle:
Store points in the leaves of the tree.

• Internal nodes store copies of the leavesInternal nodes store copies of the leaves
to satisfy binary search property:

• Node x stores in key[x] the maximum

510/20/10 CS 6463 AT: Computational Geometry

Node x stores in key[x] the maximum
key of any leaf in the left subtree of x.

Example of a 1D range treep g

1 17 43

6 8 12 14 26 35 41 42 59 61

610/20/10 CS 6463 AT: Computational Geometry

key[x] is the maximum key of any leaf in the left subtree of x.

Example of a 1D range treep g
17

x

428
≤ x > x

1 14 35 43

121 17 436 26 41 59

6 8 12 14 26 35 41 42 59 61

710/20/10 CS 6463 AT: Computational Geometry

key[x] is the maximum key of any leaf in the left subtree of x.

Example of a 1D range queryp g q y
17

x

428
≤ x > x

141 14 35 43

12 17 261 436 41 5912 17 26

8 12 14 26 35 416 42 59 618 12 14 26 35 41

810/20/10 CS 6463 AT: Computational Geometry

RANGE-QUERY([7, 41])

General 1D range queryg q y
root

split node

910/20/10 CS 6463 AT: Computational Geometry

Pseudocode, part 1:
Find the split nodeFind the split node

1D-RANGE-QUERY(T, [x1, x2])
w ← root[T]w ← root[T]
while w is not a leaf and (x2 ≤ key[w] or key[w] < x1)

do if x2 ≤ key[w]
l f []then w ← left[w]

else w ← right[w]
// w is now the split nodep
[traverse left and right from w and report relevant subtrees]

1010/20/10 CS 6463 AT: Computational Geometry

Pseudocode, part 2: Traverse
left and right from split nodeleft and right from split node

1D-RANGE-QUERY(T, [x1, x2])
[find the split node][find the split node]
// w is now the split node
if w is a leaf

h l f if k []then output the leaf w if x1 ≤ key[w] ≤ x2
else v ← left[w] // Left traversal

while v is not a leaf
do if x1 ≤ key[v]

then output the subtree rooted at right[v]
v ← left[v]v ← left[v]

else v ← right[v]
output the leaf v if x1 ≤ key[v] ≤ x2
[i ll f i h l]

w

1110/20/10 CS 6463 AT: Computational Geometry

[symmetrically for right traversal]

Analysis of 1D-RANGE-QUERYy Q
Query time: Answer to range query represented
b O(log) s btrees fo nd in O(log) timeby O(log n) subtrees found in O(log n) time.
Thus:

• Can test for points in inter al in O(log) time• Can test for points in interval in O(log n) time.
• Can report all k points in interval in

O(k + log n) timeO(k + log n) time.
• Can count points in interval in

O(log n) timeO(log n) time
Space: O(n)

1210/20/10 CS 6463 AT: Computational Geometry

Preprocessing time: O(n log n)

2D range treesg

1310/20/10 CS 6463 AT: Computational Geometry

2D range trees
Store a primary 1D range tree for all the points
based on coordinate

g

based on x-coordinate.
Thus in O(log n) time we can find O(log n) subtrees

ti th i t ith di trepresenting the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

1410/20/10 CS 6463 AT: Computational Geometry

2D range treesg
Idea: In primary 1D range tree of x-coordinate,
e er node stores a d 1D range treeevery node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node Rec rsi el search ithin eachof the node. Recursively search within each.

1510/20/10 CS 6463 AT: Computational Geometry

2D range tree exampleg p

5/8 5/8

Secondary trees
5/8

2/7

6/6

3/5

8

6

7

5

5/8

2/7

3/5

8

7
6/6

6

2/7

1

5/8

3/5

56/6

2

9/3

7/2

1/1

3

2
1/1

5 9/3

7/2

3

1/1

7/2

2 7

5

1/1 2/7 3/5 5/8 6/6 7/2

9/31 3 6

Primary tree
1610/20/10 CS 6463 AT: Computational Geometry

Primary tree

Analysis of 2D range treesy g
Query time: In O(log2 n) = O((log n)2) time, we can

t t b O(l 2) btrepresent answer to range query by O(log2 n) subtrees.
Total cost for reporting k points: O(k + (log n)2).

Space: The secondary trees at each level of the
primary tree together store a copy of the pointsprimary tree together store a copy of the points.
Also, each point is present in each secondary
tree along the path from the leaf to the root

P i ti O(l)

tree along the path from the leaf to the root.
Either way, we obtain that the space is O(n log n).

1710/20/10 CS 6463 AT: Computational Geometry

Preprocessing time: O(n log n)

d-dimensional range treesg
Each node of the secondary

iy-structure stores a tertiary
z-structure representing the points in the subtree

d h drooted at the node, etc. Save one log factor using
fractional cascading

Query time: O(k + logd n) to report k points.
Space: O(n logd – 1 n)
P i i O(l d 1)Preprocessing time: O(n logd – 1 n)

1810/20/10 CS 6463 AT: Computational Geometry

Search in Subsets
Given: Two sorted arrays A1 and A, with A1⊆A

A query interval [l,r]q y [,]
Task: Report all elements e in A1 and A with l ≤ e ≤ r
Idea: Add pointers from A to A1:

→ For each a∈A add a pointer to the→ For each a∈A add a pointer to the
smallest element b∈ A1 with b≥a

Query: Find l∈A, follow pointer to A1. Both in A and A1Q y , p 1 1
sequentially output all elements in [l,r].

3 10 19 23 30 37 59 62 80 90Query: A

10 19 30 62 80
[15,40]

A1

1910/20/10 CS 6463 AT: Computational Geometry

Runtime: O((log n + k) + (1 + k)) = O(log n + k))

Search in Subsets (cont.)()
Given: Three sorted arrays A1, A2, and A,

with A1⊆A and A2⊆A1 ⊆ 2⊆

3 10 19 23 30 37 59 62 80 90Query:
[15 40]

A

10 19 30 62 80
[15,40]

A1
3 23 37 62 90A2

R ti O((l k) (1 k) (1 k)) O(l k))Runtime: O((log n + k) + (1+k) + (1+k)) = O(log n + k))

Range trees:

Y1∪Y2

2010/20/10 CS 6463 AT: Computational Geometry
X

Y1 Y2

Fractional Cascading:
Layered Range TreeLayered Range Tree

R l 2D tReplace 2D range tree
with a layered range
tree, using sorted , g
arrays and pointers
instead of the
secondary range treessecondary range trees.

Preprocessing: p g
O(n log n)

Query:
O(log n + k)

2110/20/10 CS 6463 AT: Computational Geometry

O(log n + k)

d-dimensional range treesg

Query time: O(k + logd-1 n) to report k points,Q y (g) p p ,
uses fractional cascading in the
last dimension

Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Best data structure to date:
Query time: O(k + logd – 1 n) to report k points.
Space: O(n (log n / log log n)d – 1)
P i ti O(l d 1)

2210/20/10 CS 6463 AT: Computational Geometry

Preprocessing time: O(n logd – 1 n)

Windowingg

Input: A set S of n line segments in the planep g p
Query: Report all segments in S that
intersect a given query windowintersect a given query window

Subproblem: Process a set of intervals on the lineSubproblem: Process a set of intervals on the line
into a data structure which supports queries of the
type: Report all intervals that contain a query point

2310/20/10 CS 6463 AT: Computational Geometry

type: Report all intervals that contain a query point.

Interval trees
Goal: To maintain a dynamic set of intervals,
s ch as time inter alssuch as time intervals.

i = [7, 10]

low[i] = 7 10 = high[i]

[,]

5 1711 195
4 15 22

1711
8 18

19
23

Query: For a given query interval i, find an
interval in the set that overlaps i.

2410/20/10 CS 6463 AT: Computational Geometry

Following the methodologyg gy

1. Choose an underlying data structure.
• Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be
stored in the data structure.
• Store in each node x the interval int[x]

di t th k ll thcorresponding to the key, as well as the
largest value m[x] of all right interval
endpoints stored in the subtree rooted at x

int
endpoints stored in the subtree rooted at x.

2510/20/10 CS 6463 AT: Computational Geometry

m

Example interval tree
int
m
int
mp

17,1917,19
23d

5,11
18

22,2322,23
23

red

18

4,8
8

15,1815,18
18

23

8 18

7,10
10

m[x] = max
high[int[x]]
m[left[x]]

2610/20/10 CS 6463 AT: Computational Geometry

10
[] [f []]

m[right[x]]

Modifying operationsy g p
3. Verify that this information can be maintained

for modifying operationsfor modifying operations.
• INSERT: Fix m’s on the way down.
• Rotations — Fixup = O(1) time per rotation:

6,20
30

11,1511,15
30

p () p

11,1511,15
1930

6,20
30 19

191430 14

2710/20/10 CS 6463 AT: Computational Geometry

Total INSERT time = O(log n); DELETE similar.

New operationsp
4. Develop new dynamic-set operations that use

the informationthe information.
INTERVAL-SEARCH(i)

x ← rootx ← root
while x ≠ NIL and (low[i] > high[int[x]]

or low[int[x]] > high[i])or low[int[x]] high[i])
do i and int[x] don’t overlap

if left[x] ≠ NIL and low[i] ≤ m[left[x]]
then x ← left[x]
else x ← right[x]

t
2810/20/10 CS 6463 AT: Computational Geometry

return x

Example 1: INTERVAL-SEARCH([14,16])p ()

17,1917,19
23

x
14 1623

5,11
18

22,2322,23
23

14 16

18

4,8
8

15,1815,18
18

23

8 18

7,10
10 x ← root10 x ← root

[14,16] and [17,19] don’t overlap
14 ≤ 18 ⇒ ← l ft[]

2910/20/10 CS 6463 AT: Computational Geometry

14 ≤ 18 ⇒ x ← left[x]

Example 1: INTERVAL-SEARCH([14,16])p ()

17,1917,19
23 14 1623

5,11
18

22,2322,23
23

x

14 16

18

4,8
8

15,1815,18
18

23

8 18

7,10
1010

[14,16] and [5,11] don’t overlap
14 > 8 ⇒ ← i ht[]

3010/20/10 CS 6463 AT: Computational Geometry

14 > 8 ⇒ x ← right[x]

Example 1: INTERVAL-SEARCH([14,16])p ()

17,1917,19
23 14 1623

5,11
18

22,2322,23
23

14 16

18

4,8
8

15,1815,18
18

23

x8 18

7,10
1010

[14,16] and [15,18] overlap
t [15 18]

3110/20/10 CS 6463 AT: Computational Geometry

return [15,18]

Example 2: INTERVAL-SEARCH([12,14])p ()

17,1917,19
23

x
12 1423

5,11
18

22,2322,23
23

12 14

18

4,8
8

15,1815,18
18

23

8 18

7,10
10 x ← root10 x ← root

[12,14] and [17,19] don’t overlap
12 ≤ 18 ⇒ ← l ft[]

3210/20/10 CS 6463 AT: Computational Geometry

12 ≤ 18 ⇒ x ← left[x]

Example 2: INTERVAL-SEARCH([12,14])p ()

17,1917,19
23 12 1423

5,11
18

22,2322,23
23

x

12 14

18

4,8
8

15,1815,18
18

23

8 18

7,10
1010

[12,14] and [5,11] don’t overlap
12 > 8 ⇒ ← i ht[]

3310/20/10 CS 6463 AT: Computational Geometry

12 > 8 ⇒ x ← right[x]

Example 2: INTERVAL-SEARCH([12,14])p ()

17,1917,19
23 12 1423

5,11
18

22,2322,23
23

12 14

18

4,8
8

15,1815,18
18

23

x8 18

7,10
1010

[12,14] and [15,18] don’t overlap
12 > 10 ⇒ ← i ht[]

3410/20/10 CS 6463 AT: Computational Geometry

12 > 10 ⇒ x ← right[x]

Example 2: INTERVAL-SEARCH([12,14])p ()

17,1917,19
23 12 1423

5,11
18

22,2322,23
23

12 14

18

4,8
8

15,1815,18
18

23

8 18

7,10
10

x
10

x = NIL ⇒ no interval that
overlaps [12 14] exists

3510/20/10 CS 6463 AT: Computational Geometry

overlaps [12,14] exists

Analysisy
Time = O(h) = O(log n), since INTERVAL-
SEARCH does constant work at each level as itSEARCH does constant work at each level as it
follows a simple path down the tree.
Li ll l i i lList all overlapping intervals:
• Search, list, delete, repeat.

I h ll i h d• Insert them all again at the end.
Time = O(k log n), where k is the total number
of overlapping intervals
This is an output-sensitive bound.
of overlapping intervals.

3610/20/10 CS 6463 AT: Computational Geometry

Best algorithm to date: O(k + log n).

Correctness
Theorem. Let L be the set of intervals in the
left subtree of node x and let R be the set ofleft subtree of node x, and let R be the set of
intervals in x’s right subtree.
• If the search goes right, thenIf the search goes right, then

{ i ′ ∈ L : i ′ overlaps i } = ∅.
• If the search goes left, thenIf the search goes left, then

{i ′ ∈ L : i ′ overlaps i } = ∅
⇒ {i ′ ∈ R : i ′ overlaps i } = ∅.{ p }

In other words, it’s always safe to take only 1
of the 2 children: we’ll either find something,

3710/20/10 CS 6463 AT: Computational Geometry

f f g
or nothing was to be found.

Correctness proofp
Proof. Suppose first that the search goes right.

If l f [] NIL th ’ d i L ∅• If left[x] = NIL, then we’re done, since L = ∅.
• Otherwise, the code dictates that we must have

l [i] > [l ft[]] Th l [l ft[]]low[i] > m[left[x]]. The value m[left[x]]
corresponds to the right endpoint of some
interval j ∈ L and no other interval in L caninterval j ∈ L, and no other interval in L can
have a larger right endpoint than high(j).

iL
high(j) = m[left[x]]

i
low(i)

3810/20/10 CS 6463 AT: Computational Geometry

• Therefore, {i ′ ∈ L : i ′ overlaps i } = ∅.

Proof (continued)()
Suppose that the search goes left, and assume that

{i ′ ∈ L : i ′ overlaps i } = ∅{i ∈ L : i overlaps i } ∅.
• Then, the code dictates that low[i] ≤ m[left[x]] =

high[j] for some j ∈ L.high[j] o so e j
• Since j ∈ L, it does not overlap i, and hence

high[i] < low[j].g [] [j]
• But, the binary-search-tree property implies that

for all i ′ ∈ R, we have low[j] ≤ low[i ′].
• But then {i ′ ∈ R : i ′ overlaps i } = ∅.

i j

3910/20/10 CS 6463 AT: Computational Geometry

Li ′

