CS 6463 -- Fall 2010

Range Searching and Windowing Carola Wenk

Orthogonal range searching

Input: n points in d dimensions

- E.g., representing a database of n records each with d numeric fields

Query: Axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box:
- Are there any points?
- How many are there?
- List the points.

Orthogonal range searching

Input: n points in d dimensions
Query: Axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box

Goal: Preprocess points into a data structure to support fast queries

- Primary goal: Static data structure
- In 1D, we will also obtain a dynamic data structure supporting insert and delete

1D range searching

In 1 D , the query is an interval:

First solution:

- Sort the points and store them in an array
- Solve query by binary search on endpoints.
- Obtain a static structure that can list
k answers in a query in $O(k+\log n)$ time.
Goal: Obtain a dynamic structure that can list k answers in a query in $O(k+\log n)$ time.

1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
- New organization principle: Store points in the leaves of the tree.
- Internal nodes store copies of the leaves to satisfy binary search property:
- Node x stores in $k e y[x]$ the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

$\operatorname{key}[x]$ is the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

$k e y[x]$ is the maximum key of any leaf in the left subtree of x.

Example of a 1D range query

General 1D range query

Pseudocode, part 1: Find the split node

1D-Range-Query $\left(T,\left[x_{1}, x_{2}\right]\right)$
$w \leftarrow \operatorname{root}[T]$
while w is not a leaf and $\left(x_{2} \leq \operatorname{key}[w]\right.$ or $\left.k e y[w]<x_{1}\right)$ do if $x_{2} \leq k e y[w]$
then $w \leftarrow$ left $[w]$
else $w \leftarrow \operatorname{right}[w]$
$/ / w$ is now the split node
[traverse left and right from w and report relevant subtrees]

Pseudocode, part 2: Traverse left and right from split node

1D-Range-QUERY(T, [$\left.\left.x_{1}, x_{2}\right]\right)$
[find the split node]
$/ / w$ is now the split node
if w is a leaf
then output the leaf w if $x_{1} \leq \operatorname{key}[w] \leq x_{2}$
else $v \leftarrow$ left $[w]$
// Left traversal
while v is not a leaf
do if $x_{1} \leq k e y[v]$
then output the subtree rooted at right $[v]$
$v \leftarrow \operatorname{left}[v]$
else $v \leftarrow \operatorname{right}[v]$
output the leaf v if $x_{1} \leq \operatorname{key}[v] \leq x_{2}$
[symmetrically for right traversal]

Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented by $\mathrm{O}(\log n)$ subtrees found in $\mathrm{O}(\log n)$ time.
Thus:

- Can test for points in interval in $\mathrm{O}(\log n)$ time.
- Can report all k points in interval in $\mathrm{O}(\mathrm{k}+\log n)$ time.
- Can count points in interval in O(log n) time

Space: O(n)
 Preprocessing time: $O(n \log n)$

2D range trees

Store a primary 1D range tree for all the points based on x-coordinate.
Thus in $\mathrm{O}(\log n)$ time we can find $\mathrm{O}(\log n)$ subtrees representing the points with proper x-coordinate. How to restrict to points with proper y-coordinate?

2D range trees

Idea: In primary 1 D range tree of x-coordinate, every node stores a secondary 1D range tree based on y-coordinate for all points in the subtree of the node. Recursively search within each.

2D range tree example

Secondary trees

Analysis of 2D range trees

Query time: In $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)=\mathrm{O}\left((\log n)^{2}\right)$ time, we can represent answer to range query by $O\left(\log ^{2} n\right)$ subtrees.
Total cost for reporting k points: $\mathrm{O}\left(k+(\log n)^{2}\right)$.
Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $\mathrm{O}(n \log n)$.
Preprocessing time: $\mathrm{O}(n \log n)$

d-dimensional range trees

Each node of the secondary y-structure stores a tertiary

z-structure representing the points in the subtree rooted at the node, etc. Save one \log factor using fractional cascading

Query time: $\mathrm{O}\left(k+\log ^{d} n\right)$ to report k points. Space: $O\left(n \log ^{d-1} n\right)$
Preprocessing time: $\mathrm{O}\left(n \log ^{d-1} n\right)$

Search in Subsets

Given: Two sorted arrays A_{1} and A, with $A_{1} \subseteq A$ A query interval $[1, r]$
Task: Report all elements e in A_{1} and A with $l \leq e \leq r$ Idea: Add pointers from A to A_{1} : \rightarrow For each $a \in A$ add a pointer to the smallest element $b \in A_{1}$ with $b \geq a$
Query: Find $l \in A$, follow pointer to A_{1}. Both in A and A_{1} sequentially output all elements in $[l, r]$.

Runtime: $\mathrm{O}((\log n+k)+(1+k))=\mathrm{O}(\log n+k))$

Search in Subsets (cont.)

Given: Three sorted arrays A_{1}, A_{2}, and A, with $A_{1} \subseteq A$ and $A_{2} \subseteq A$

Runtime: $\mathrm{O}((\log n+k)+(1+k)+(1+k))=\mathrm{O}(\log n+k))$
Range trees:

Fractional Cascading: Layered Range Tree

Replace 2D range tree with a layered range tree, using sorted arrays and pointers
 instead of the secondary range trees.

Preprocessing: $\mathrm{O}(n \log n)$
Query:

$$
\mathrm{O}(\log n+k)
$$

d-dimensional range trees

Query time: $\mathrm{O}\left(k+\log ^{d-1} n\right)$ to report k points, uses fractional cascading in the last dimension
Space: $O\left(n \log ^{d-1} n\right)$
Preprocessing time: $\mathrm{O}\left(n \log ^{d-1} n\right)$

Best data structure to date: Query time: $\mathrm{O}\left(k+\log ^{d-1} n\right)$ to report k points. Space: $O\left(n(\log n / \log \log n)^{d-1}\right)$
Preprocessing time: $\mathrm{O}\left(n \log ^{d-1} n\right)$

Windowing

Input: A set S of n line segments in the plane
Query: Report all segments in S that intersect a given query window

Subproblem: Process a set of intervals on the line into a data structure which supports queries of the type: Report all intervals that contain a query point.

Interval trees

Goal: To maintain a dynamic set of intervals, such as time intervals.

```
\(\operatorname{low}[i]=7 \bullet \quad \begin{aligned} & i=[7,10] \\ & \\ & 10=\operatorname{high}[i]\end{aligned}\)
```


Query: For a given query interval i, find an interval in the set that overlaps i.

Following the methodology

1. Choose an underlying data structure.

- Red-black tree keyed on low (left) endpoint.

2. Determine additional information to be stored in the data structure.

- Store in each node x the interval int $[x]$ corresponding to the key, as well as the largest value $m[x]$ of all right interval endpoints stored in the subtree rooted at x.

Example interval tree

CS 6463 AT: Computational Geometry

Modifying operations

3. Verify that this information can be maintained for modifying operations.

- Insert: Fix m's on the way down.
- Rotations - Fixup $=O(1)$ time per rotation:

Total Insert time $=O(\log n) ;$ Delete similar.

New operations

4. Develop new dynamic-set operations that use the information.

INTERVAL-SEARCH(i)
$x \leftarrow$ root
while $x \neq$ NIL and (low[i] > high $[\operatorname{int}[x]]$ or low $[\operatorname{int}[x]]>\operatorname{high}[i])$
do $\triangleright i$ and $\operatorname{int}[x]$ don't overlap if $\operatorname{left}[x] \neq$ NIL and $\operatorname{low}[i] \leq m[\operatorname{left}[x]]$ then $x \leftarrow \operatorname{left}[x]$ else $x \leftarrow \operatorname{right}[x]$
return x

Example 1: Interval-Search([14,16])

Example 1: Interval-Search([14,16])

Example 1: Interval-Search([14,16])

Example 2: Interval-Search([12,14])

Example 2: Interval-Search([12,14])

[12,14] and [5,11] don't overlap
$12>8 \Rightarrow x \leftarrow \operatorname{right}[x]$

Example 2: Interval-Search([12,14])

[12,14] and [15,18] don't overlap
$12>10 \Rightarrow x \leftarrow \operatorname{right}[x]$

Example 2: Interval-Search([12,14])

Analysis

Time $=O(h)=O(\log n)$, since InTERVAL-
SEARCH does constant work at each level as it follows a simple path down the tree.
List all overlapping intervals:

- Search, list, delete, repeat.
- Insert them all again at the end.

Time $=O(k \log n)$, where k is the total number of overlapping intervals.
This is an output-sensitive bound.
Best algorithm to date: $O(k+\log n)$.

Correctness

Theorem. Let L be the set of intervals in the left subtree of node x, and let R be the set of intervals in x 's right subtree.

- If the search goes right, then

$$
\left\{i^{\prime} \in L: i^{\prime} \text { overlaps } i\right\}=\varnothing \text {. }
$$

- If the search goes left, then

$$
\begin{aligned}
& \left\{i^{\prime} \in L: i^{\prime} \text { overlaps } i\right\}=\varnothing \\
& \Rightarrow\left\{i^{\prime} \in R: i^{\prime} \text { overlaps } i\right\}=\varnothing .
\end{aligned}
$$

In other words, it's always safe to take only 1 of the 2 children: we'll either find something, or nothing was to be found.

Correctness proof

Proof. Suppose first that the search goes right.

- If left $[x]=$ NIL, then we're done, since $L=\varnothing$.
- Otherwise, the code dictates that we must have low $[i]>m[$ left $[x]]$. The value $m[$ left $[x]]$ corresponds to the right endpoint of some interval $j \in L$, and no other interval in L can have a larger right endpoint than $\operatorname{high}(j)$.

$$
\operatorname{high}(j)=m[\operatorname{left}[x]] \longrightarrow
$$

- Therefore, $\left\{i^{\prime} \in L: i^{\prime}\right.$ overlaps $\left.i\right\}=\varnothing$.

Proof (continued)

Suppose that the search goes left, and assume that $\left\{i^{\prime} \in L: i^{\prime}\right.$ overlaps $\left.i\right\}=\varnothing$.

- Then, the code dictates that low $[i] \leq m[\operatorname{left}[x]]=$ high[$j]$ for some $j \in L$.
- Since $j \in L$, it does not overlap i, and hence high[i] < low[j].
- But, the binary-search-tree property implies that for all $i^{\prime} \in R$, we have $\operatorname{low}[j] \leq \operatorname{low}\left[i^{\prime}\right]$.
- But then $\left\{i^{\prime} \in R: i^{\prime}\right.$ overlaps $\left.i\right\}=\varnothing$. \square

