

### CS 6463 -- Fall 2010



### **Range Searching and Windowing** Carola Wenk



### **Orthogonal range searching**

#### **Input:** *n* points in *d* dimensions

• E.g., representing a database of *n* records each with *d* numeric fields

Query: Axis-aligned *box* (in 2D, a rectangle)

- Report on the points inside the box:
  - Are there any points?
  - How many are there?
  - List the points.





### **Orthogonal range searching**

**Input:** *n* points in *d* dimensions

Query: Axis-aligned *box* (in 2D, a rectangle)

• Report on the points inside the box

**Goal:** Preprocess points into a data structure to support fast queries

- Primary goal: *Static data structure*
- In 1D, we will also obtain a dynamic data structure supporting insert and delete





### **1D range searching**

In 1D, the query is an interval:

First solution:

- Sort the points and store them in an array
  - Solve query by binary search on endpoints.
  - Obtain a static structure that can list
    - *k* answers in a query in  $O(k + \log n)$  time.
- **Goal:** Obtain a dynamic structure that can list *k* answers in a query in  $O(k + \log n)$  time.



### **1D range searching**

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
  - New organization principle: Store points in the *leaves* of the tree.
  - Internal nodes store copies of the leaves to satisfy binary search property:
    - Node *x* stores in *key*[*x*] the maximum key of any leaf in the left subtree of *x*.



key[x] is the maximum key of any leaf in the left subtree of x.10/20/10CS 6463 AT: Computational Geometry6



key[x] is the maximum key of any leaf in the left subtree of x.10/20/10CS 6463 AT: Computational Geometry7

![](_page_7_Figure_0.jpeg)

![](_page_8_Figure_0.jpeg)

![](_page_9_Picture_0.jpeg)

### **Pseudocode, part 1: Find the split node**

1D-RANGE-QUERY(T, [x<sub>1</sub>, x<sub>2</sub>])
w ← root[T]
while w is not a leaf and (x<sub>2</sub> ≤ key[w] or key[w] < x<sub>1</sub>)
do if x<sub>2</sub> ≤ key[w]
then w ← left[w]
else w ← right[w]
// w is now the split node
[traverse left and right from w and report relevant subtrees]

![](_page_9_Picture_3.jpeg)

![](_page_10_Picture_0.jpeg)

# **Pseudocode, part 2: Traverse left and right from split node**

1D-RANGE-QUERY $(T, [x_1, x_2])$ [find the split node] // w is now the split node if w is a leaf **then** output the leaf w if  $x_1 \le key[w] \le x_2$ else  $v \leftarrow left[w]$ // Left traversal while *v* is not a leaf **do if**  $x_1 \leq key[v]$ then output the subtree rooted at *right*[v]  $v \leftarrow left[v]$ else  $v \leftarrow right[v]$ output the leaf v if  $x_1 \leq key[v] \leq x_2$ [symmetrically for right traversal]

11

![](_page_11_Picture_0.jpeg)

## **Analysis of 1D-RANGE-QUERY**

**Query time:** Answer to range query represented by  $O(\log n)$  subtrees found in  $O(\log n)$  time. Thus:

- Can test for points in interval in  $O(\log n)$  time.
- Can report all k points in interval in  $O(k + \log n)$  time.
- Can count points in interval in  $O(\log n)$  time

### **Space:** O(n)**Preprocessing time:** O(*n* log *n*)

![](_page_11_Picture_7.jpeg)

![](_page_12_Picture_0.jpeg)

### **2D range trees**

![](_page_12_Figure_2.jpeg)

10/20/10

![](_page_13_Picture_0.jpeg)

### **2D range trees**

Store a *primary* 1D range tree for all the points based on *x*-coordinate.

Thus in  $O(\log n)$  time we can find  $O(\log n)$  subtrees representing the points with proper *x*-coordinate. How to restrict to points with proper *y*-coordinate?

![](_page_13_Figure_4.jpeg)

CS 6463 AT: Computational Geometry

![](_page_14_Picture_0.jpeg)

### **2D range trees**

![](_page_14_Picture_2.jpeg)

**Idea:** In primary 1D range tree of *x*-coordinate, every node stores a *secondary* 1D range tree based on y-coordinate for all points in the subtree of the node. Recursively search within each.

![](_page_14_Figure_4.jpeg)

CS 6463 AT: Computational Geometry

![](_page_15_Picture_0.jpeg)

### 2D range tree example

Secondary trees

![](_page_15_Figure_3.jpeg)

![](_page_16_Picture_0.jpeg)

### **Analysis of 2D range trees**

**Query time:** In  $O(\log^2 n) = O((\log n)^2)$  time, we can represent answer to range query by  $O(\log^2 n)$  subtrees. Total cost for reporting *k* points:  $O(k + (\log n)^2)$ .

**Space:** The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is  $O(n \log n)$ .

### **Preprocessing time:** O(n log n)

![](_page_17_Picture_0.jpeg)

### *d*-dimensional range trees

Each node of the secondary

y-structure stores a tertiary

*z*-structure representing the points in the subtree

rooted at the node, etc.

Save one log factor using fractional cascading

Query time:  $O(k + \log^{d} n)$  to report k points. Space:  $O(n \log^{d-1} n)$ Preprocessing time:  $O(n \log^{d-1} n)$ 

![](_page_18_Picture_0.jpeg)

### **Search in Subsets**

- **Given:** Two sorted arrays  $A_1$  and A, with  $A_1 \subseteq A$ A query interval [l,r]
- **Task:** Report all elements e in  $A_1$  and A with  $l \le e \le r$
- Idea: Add pointers from A to  $A_1$ :  $\rightarrow$  For each  $a \in A$  add a pointer to the smallest element  $b \in A_1$  with  $b \ge a$

**Query:** Find  $l \in A$ , follow pointer to  $A_1$ . Both in A and  $A_1$  sequentially output all elements in [l,r].

![](_page_18_Figure_6.jpeg)

#### **Runtime:** $O((\log n + k) + (1 + k)) = O(\log n + k))$

10/20/10

![](_page_19_Picture_0.jpeg)

### Search in Subsets (cont.)

## **Given:** Three sorted arrays $A_1, A_2$ , and A, with $A_1 \subseteq A$ and $A_2 \subseteq A$

![](_page_19_Figure_3.jpeg)

**Runtime:**  $O((\log n + k) + (1+k) + (1+k)) = O(\log n + k))$ 

![](_page_19_Figure_5.jpeg)

![](_page_20_Picture_0.jpeg)

### **Fractional Cascading:** Layered Range Tree

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing:  $O(n \log n)$ Query:  $O(\log n + k)$ 

8 52 15 58 17 58 5 8 12 15 33 52 (2,19) (7,10) (12,3) (17,62) (21,49) (41,95) (58,59) (93,70)(5,80) (8,37) (15,99) (33,30) (52,23) (67,89)23 30 37 49 59 62 70 80 89 95 19 99 10 10 19 37 62 80 23 30 49 59 70 89 95 99 23 30 49 95 19 37 80 62 99 59 70 89 10 10 37 62 • • 30 49 99 23 95 80 59 89 70 80 49 <u>30</u> 10 37 3 99 • • 95 23

17

10/20/10

![](_page_21_Picture_0.jpeg)

### **d**-dimensional range trees

Query time:  $O(k + \log^{d-1} n)$  to report k points, uses fractional cascading in the last dimension Space:  $O(n \log^{d-1} n)$ Preprocessing time:  $O(n \log^{d-1} n)$ 

Best data structure to date: Query time:  $O(k + \log^{d-1} n)$  to report k points. Space:  $O(n (\log n / \log \log n)^{d-1})$ Preprocessing time:  $O(n \log^{d-1} n)$ 

![](_page_22_Picture_0.jpeg)

### Windowing

**Input:** A set *S* of *n* line segments in the plane

**Query:** Report all segments in *S* that intersect a given query window

![](_page_22_Figure_4.jpeg)

**Subproblem:** Process a set of intervals on the line into a data structure which supports queries of the type: Report all intervals that contain a query point.

![](_page_23_Picture_0.jpeg)

### **Interval trees**

## **Goal:** To maintain a dynamic set of intervals, such as time intervals.

![](_page_23_Figure_3.jpeg)

**Query:** For a given query interval *i*, find an interval in the set that overlaps *i*.

![](_page_24_Picture_0.jpeg)

## Following the methodology

- Choose an underlying data structure.
   Red-black tree keyed on low (left) endpoint.
- 2. Determine additional information to be stored in the data structure.
  - Store in each node x the interval int[x] corresponding to the key, as well as the largest value m[x] of all right interval endpoints stored in the subtree rooted at x.

![](_page_24_Figure_5.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_26_Picture_0.jpeg)

## **Modifying operations**

## *3. Verify that this information can be maintained for modifying operations.*

- INSERT: Fix *m*'s on the way down.
- Rotations Fixup = O(1) time per rotation:

![](_page_26_Figure_5.jpeg)

#### Total INSERT time = $O(\log n)$ ; DELETE similar.

![](_page_27_Picture_0.jpeg)

## **New operations**

4. Develop new dynamic-set operations that use the information.

INTERVAL-SEARCH(*i*)  $x \leftarrow root$ while  $x \neq NIL$  and (low[i] > high[int[x]] or low[int[x]] > high[i]) do > i and int[x] don't overlap if  $left[x] \neq NIL$  and  $low[i] \leq m[left[x]]$ then  $x \leftarrow left[x]$  $else x \leftarrow right[x]$ 

#### return x

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

## Example 2: Interval-Search([12,14])

![](_page_31_Picture_1.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Picture_0.jpeg)

### Analysis

Time =  $O(h) = O(\log n)$ , since INTERVAL-SEARCH does constant work at each level as it follows a simple path down the tree.

### List *all* overlapping intervals:

- Search, list, delete, repeat.
- Insert them all again at the end. Time =  $O(k \log n)$ , where k is the total number of overlapping intervals.
- This is an *output-sensitive* bound.

Best algorithm to date:  $O(k + \log n)$ .

![](_page_36_Picture_0.jpeg)

### Correctness

**Theorem.** Let *L* be the set of intervals in the left subtree of node x, and let *R* be the set of intervals in x's right subtree.

• If the search goes right, then

 $\{ i' \in L : i' \text{ overlaps } i \} = \emptyset.$ 

• If the search goes left, then

 $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$ 

 $\Rightarrow$  { $i' \in R : i'$  overlaps i } =  $\emptyset$ .

In other words, it's always safe to take only 1 of the 2 children: we'll either find something, or nothing was to be found.

![](_page_37_Picture_0.jpeg)

### **Correctness proof**

*Proof.* Suppose first that the search goes right.

- If left[x] = NIL, then we're done, since  $L = \emptyset$ .
- Otherwise, the code dictates that we must have low[i] > m[left[x]]. The value m[left[x]] corresponds to the right endpoint of some interval j ∈ L, and no other interval in L can have a larger right endpoint than high(j).

$$i$$

$$high(j) = m[left[x]] \xrightarrow{i} low(i)$$

• Therefore,  $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$ .

![](_page_38_Picture_0.jpeg)

## **Proof (continued)**

Suppose that the search goes left, and assume that  $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$ .

- Then, the code dictates that *low*[*i*] ≤ *m*[*left*[*x*]] = *high*[*j*] for some *j* ∈ *L*.
- Since *j* ∈ *L*, it does not overlap *i*, and hence *high*[*i*] < *low*[*j*].
- But, the binary-search-tree property implies that for all *i*′ ∈ *R*, we have *low*[*j*] ≤ *low*[*i*′].
- But then  $\{i' \in R : i' \text{ overlaps } i\} = \emptyset$ .

![](_page_38_Figure_7.jpeg)