Geometric Shape Matching

- Consider geometric shapes to be composed of a number of basic objects such as
- How similar are two geometric shapes?

\rightarrow

- Transformations (translations, rotations, scalings)
- Choice of distance measure
- Full or partial matching

Research Interests

- Computational Geometry: Shape matching

When are curves „similar"?

- Directed Hausdorff distance

$$
\delta \rightarrow(\mathrm{A}, \mathrm{~B})=\max \min \|a-b\|
$$

- Undirected Hausdorff distance

$$
\delta(\mathrm{A}, \mathrm{~B})=\max \left(\delta^{\rightarrow}(\mathrm{A}, \mathrm{~B}), \delta \vec{\delta}(\mathrm{B}, \mathrm{~A})\right)
$$

But:

- Small Hausdorff distance
- When considered as curves the distance should be large
- The Fréchet distance takes
continuity of curves into account

Fréchet Distance

$$
\delta_{\mathrm{F}}(\alpha, \beta)=\inf _{\mathrm{f}, \mathrm{~g}:[0,1]-[0,1]} \max _{\mathrm{t} \in[0,1]}\|\alpha(\mathrm{f}(\mathrm{t}))-\beta(\mathrm{g}(\mathrm{t}))\|
$$

where f and g range over continuous non-decreasing reparametrizations only.

Fréchet Distance

$$
\delta_{F}(\alpha, \beta)=\inf _{f, g:[0,1]-[0,1]} \max _{\mathrm{t} \in[0,1]}\|\alpha(f(\mathrm{t}))-\beta(\mathrm{g}(\mathrm{t}))\|
$$

where f and g range over continuous non-decreasing reparametrizations only.

- Man and dog walk on one curve each
- They hold a leash

Fréchet Distance

$$
\delta_{F}(\alpha, \beta)=\inf _{f, g:[0,1]-[0,1]} \max _{\mathrm{t} \in[0,1]}\|\alpha(f(\mathrm{t}))-\beta(\mathrm{g}(\mathrm{t}))\|
$$

where f and g range over continuous non-decreasing reparametrizations only.

- Man and dog walk on one curve each
- They hold a leash
- Only allowed to go
forward

Fréchet Distance

$$
\delta_{F}(\alpha, \beta)=\inf _{f, g:[0,1]-[0,1]} \max _{\mathrm{t} \in[0,1]}\|\alpha(f(\mathrm{t}))-\beta(\mathrm{g}(\mathrm{t}))\|
$$

where f and g range over continuous non-decreasing reparametrizations only.

- Man and dog walk on one curve each
- They hold a leash
- Only allowed to go
forward

Fréchet Distance

$$
\delta_{\mathrm{F}}(\alpha, \beta)=\inf _{\mathrm{f}, \mathrm{~g}:[0,1]-[0,1]} \max _{\mathrm{t} \in[0,1]}\|\alpha(\mathrm{f}(\mathrm{t}))-\beta(\mathrm{g}(\mathrm{t}))\|
$$

where f and g range over continuous non-decreasing reparametrizations only.

- Man and dog walk on one curve each
- They hold a leash
- Only allowed to go
forward

Fréchet Distance

$$
\delta_{F}(\alpha, \beta)=\inf _{f, g:[0,1]-[0,1]} \max _{\mathrm{t} \in[0,1]}\|\alpha(f(\mathrm{t}))-\beta(\mathrm{g}(\mathrm{t}))\|
$$

where f and g range over continuous non-decreasing reparametrizations only.

- Man and dog walk on one curve each
- They hold a leash
- Only allowed to go
forward

Fréchet Distance

$$
\delta_{F}(\alpha, \beta)=\inf _{f, g:[0,1]-[0,1]} \max _{\mathrm{t} \in[0,1]}\|\alpha(f(\mathrm{t}))-\beta(\mathrm{g}(\mathrm{t}))\|
$$

where f and g range over continuous non-decreasing reparametrizations only.

- Man and dog walk on
 one curve each
- They hold a leash
- Only allowed to go
forward

Fréchet Distance

$$
\delta_{\mathrm{F}}(\alpha, \beta)=\inf _{\mathrm{f}, \mathrm{~g}:[0,1]-[0,1]} \max _{\mathrm{t} \in[0,1]}\|\alpha(\mathrm{f}(\mathrm{t}))-\beta(\mathrm{g}(\mathrm{t}))\|
$$

where f and g range over continuous non-decreasing reparametrizations only.

- Man and dog walk on one curve each
- They hold a leash
- Only allowed to go
forward

Fréchet Distance

$$
\delta_{\mathrm{F}}(\alpha, \beta)=\inf _{\mathrm{f}, \mathrm{~g}:[0,1]-[0,1]} \max _{\mathrm{t} \in[0,1]}\|\alpha(\mathrm{f}(\mathrm{t}))-\beta(\mathrm{g}(\mathrm{t}))\|
$$

where f and g range over continuous non-decreasing reparametrizations only.

- Man and dog walk on one curve each
- They hold a leash
- Only allowed to go
forward

Fréchet Distance

$$
\delta_{F}(\alpha, \beta)=\inf _{f, g:[0,1]-[0,1]} \max _{\mathrm{t} \in[0,1]}\|\alpha(f(\mathrm{t}))-\beta(\mathrm{g}(\mathrm{t}))\|
$$

where f and g range over continuous non-decreasing reparametrizations only.

- Man and dog walk on one curve each
- They hold a leash
- Only allowed to go forward
- δ_{F} is the minimum possible leash length

Free Space Diagram

- Let $\varepsilon>0$ fixed (eventually solve decision problem)
- $\mathrm{F}_{\varepsilon}(\alpha, \beta)=\left\{(\mathrm{s}, \mathrm{t}) \in[0,1]^{2} \mid\|\alpha(\mathrm{s})-\beta(\mathrm{t})\| \leq \varepsilon\right\}$ white points free space of α and β
- $\mathrm{FD}_{\varepsilon}(\alpha, \beta)$ free space diagram white and black points

Free Space Diagram

- $\delta_{\mathrm{F}}(\alpha, \beta) \leq \varepsilon$ iff there is a monotone path in the free space from $(0,0)$ to $(1,1)$
- Monotone path encodes reparametrizations of α and β
- Find monotone path in $\mathrm{O}(\mathrm{mn})$ time

