
8/30/10 CS 6463: AT Computational Geometry 1

CS 6463: AT Computational Geometry
Fall 2010

Convex Hulls II
Carola Wenk

8/30/10 CS 6463: AT Computational Geometry 2

Graham’s Scan

Incremental algorithm
– Compute solution by incrementally adding points
– Add points in which order?

• Sorted by x-coordinate
• But convex hulls are cyclically ordered
→ Break convex hull in upper and lower part

upper convex hull UCH(P)

lower convex hull LCH(P)

8/30/10 CS 6463: AT Computational Geometry 3

Graham’s LCH
Algorithm Grahams_LCH(P):
// Incrementally compute the lower convex hull of P
Input: Point set P ⊆ R2

Output: A list L of vertices describing LCH(P) in counter-clockwise order

Sort P in increasing order by x-coordinate → P = {p1,…,pn}
L = {p2,p1}
for i=3 to n

while |L|>=2 and orientation(L.second(), L.first(), pi,) <= 0 // no left turn
delete first element from L

Append pi to the front of L

• Each element is appended only once, and hence only deleted at
most once ⇒ the for-loop takes O(n) time

• O(n log n) time total

O(n log n)

O(n)

8/30/10 CS 6463: AT Computational Geometry 4

Lower Bound
• Comparison-based sorting of n elements takes Ω(n

log n) time.
• How can we use this lower bound to show a lower

bound for the computation of the convex hull of n
points in R2?

• Devise a sorting algorithm which uses the convex
hull and otherwise only linear-time operations
⇒ Since this is a comparison-based sorting algorithm, the

lower bound Ω(n log n) applies
⇒ Since all other operations need linear time, the convex

hull algorithm has to take Ω(n log n) time

8/30/10 CS 6463: AT Computational Geometry 5

CH_Sort
Algorithm CH_Sort(S):
/* Sorts a set of numbers using a convex hull

algorithm.
Converts numbers to points, runs CH,
converts back to sorted sequence. */

Input: Set of numbers S ⊆ R
Output: A list L of of numbers in S sorted in

increasing order
P=∅
for each s∈S insert (s,s2) into P
L’ = CH(P) // compute convex hull
Find point p’∈P with minimum x-coordinate
for each p=(px,py)∈L’, starting with p’,

add px into L
return L

s2

s
-2-4 1 4 5

