## CS 6463: AT Computational Geometry Fall 2010



# Convex Hulls II Carola Wenk 

## Graham's Scan

## Incremental algorithm

- Compute solution by incrementally adding points
- Add points in which order?
- Sorted by x-coordinate
- But convex hulls are cyclically ordered
$\rightarrow$ Break convex hull in upper and lower part



## Graham's LCH

```
Algorithm Grahams_LCH(P):
// Incrementally compute the lower convex hull of P
Input: Point set \(P \subseteq \mathbf{R}^{2}\)
Output: A list \(L\) of vertices describing \(\operatorname{LCH}(P)\) in counter-clockwise order
\(\mathrm{O}(\mathrm{n} \log \mathrm{n}) \quad\) Sort \(P\) in increasing order by x-coordinate \(\rightarrow P=\left\{p_{1}, \ldots, p_{n}\right\}\)
\(L=\left\{p_{2}, p_{1}\right\}\)
for \(i=3\) to \(n\)
    while \(|L|>=2\) and orientation(L.second(), L.first(), \(\mathrm{p}_{\mathrm{i}}\), \()<=0 / /\) no left turn
            delete first element from L
    Append \(p_{i}\) to the front of \(L\)
```

- Each element is appended only once, and hence only deleted at most once $\Rightarrow$ the for-loop takes $\mathrm{O}(n)$ time
- O( $n \log n$ ) time total


## Lower Bound

- Comparison-based sorting of $n$ elements takes $\Omega(n$ $\log n)$ time.
- How can we use this lower bound to show a lower bound for the computation of the convex hull of $n$ points in $\mathbf{R}^{2}$ ?
- Devise a sorting algorithm which uses the convex hull and otherwise only linear-time operations
$\Rightarrow$ Since this is a comparison-based sorting algorithm, the lower bound $\Omega(n \log n)$ applies
$\Rightarrow$ Since all other operations need linear time, the convex hull algorithm has to take $\Omega(n \log n)$ time


## CH_Sort

```
Algorithm CH_Sort(S):
/* Sorts a set of numbers using a convex hull
    algorithm.
    Converts numbers to points, runs CH,
    converts back to sorted sequence. */
Input: Set of numbers \(S \subseteq \mathbf{R}\)
Output: A list \(L\) of of numbers in \(S\) sorted in
                increasing order
\(\mathrm{P}=\varnothing\)
for each \(s \in S\) insert ( \(s, s^{2}\) ) into \(P\)
\(L^{\prime}=\mathrm{CH}(P) / /\) compute convex hull
Find point \(p^{\prime} \in P\) with minimum \(x\)-coordinate
for each \(p=\left(p_{x} p_{y}\right) \in L^{\prime}\), starting with \(p^{\prime}\),
    add \(p_{x}\) into \(L\)
return \(L\)
```



