CS 6463: AT Computational Geometry Fall 2010

Convex Hulls

Carola Wenk

Convex Hull Problem

- Given a set of pins on a pinboard and a rubber band around them. How does the rubber band look when it snaps tight?
- The convex hull of a point set is one of the simplest shape
 approximations for a set of points.

Convexity

- A set $C \subseteq \mathbf{R}^{2}$ is convex if for all two points $p, q \in C$ the line segment $\overline{p q}$ is fully contained in C.

convex

non-convex

Convex Hull

The convex hull $C H(P)$ of a point set $P \subseteq \mathbf{R}^{2}$ is the smallest convex set $C \supseteq P$. In other words $\mathrm{CH}(\mathrm{P})=\bigcap_{C \supseteq P} \mathrm{C}$.

Convex Hull

- Observation: $\mathrm{CH}(\mathrm{P})$ is the unique convex polygon whose vertices are points of P and which contains all points of P.
- We represent the convex hull as the sequence of points on the convex hull polygon (the boundary of the convex hull), in counter-clockwise order.

A First Try

```
Algorithm SLOW_CH(P):
/* \(\mathrm{CH}(\mathrm{P})=\) Intersection of all half-planes that are defined by the directed line through
    ordered pairs of points in P and that have all remaining points of P on their left */
Input: Point set \(P \subseteq \mathbf{R}^{2}\)
Output: A list \(L\) of vertices describing the \(\mathrm{CH}(P)\) in counter-clockwise order
\(E:=\varnothing\)
for all \((p, q) \in P \times P\) with \(p \neq q\) // ordered pair
    valid := true
    for all \(r \in P, r \neq p\) and \(r \neq q\)
        if \(r\) lies to the right of directed line through \(p\) and \(q\) // takes constant time
                        valid := false
    if valid then
    \(E:=E \cup \overrightarrow{p q} \quad / /\) directed edge
Construct from \(E\) sorted list \(L\) of vertices of \(\mathrm{CH}(P)\) in counter-clockwise order
```

- Runtime: $\mathrm{O}\left(n^{3}\right)$, where $n=|P|$
- How to test that a point lies to the left?

Orientation Test / Halfplane Test

- positive orientation (counter-clockwise)
- r lies to the left of $p q$
- negative orientation (clockwise)

- zero orientation
- r lies on the line $\overrightarrow{\mathrm{pq}}$
- \vec{r} ies to the right of $\overrightarrow{\mathrm{pq}}$
- Orient $(p, q, r)=\operatorname{sign} \operatorname{det}\left(\begin{array}{ll}1 & p_{x} \\ 1 & p_{y} \\ 1 & q_{x} \\ 1 & q_{y} \\ 1 & r_{y}\end{array}\right)$,where $p=\left(p_{x}, p_{y}\right)$
- Can be computed in constant time

Convex Hull: Divide \& Conquer

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets \mathbf{A} and \mathbb{B} :
- A contains the left $\lfloor n / 2\rfloor$ points,
- \mathbb{B} contains the right $\lceil\mathrm{n} / 2\rceil$ points
- Recursively compute the convex hull of \mathbf{A}

Recursively compute the convex hull of B

- Merge the two convex hulls

Merging

- Find upper and lower tangent
- With those tangents the convex hull of $A \cup B$ can be computed from the convex hulls of A and the convex hull of B in $O(n)$ linear time

A
B

Finding the lower tangent

$\mathrm{a}=$ rightmost point of A

$\mathrm{b}=$ leftmost point of B
while $\mathrm{T}=\mathrm{ab}$ not lower tangent to both convex hulls of A and B do\{
while T not lower tangent to convex hull of A do\{ $a=a-1$
\}
while T not lower tangent to

A

Convex Hull: Runtime

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets \mathbf{A} and \mathbb{B} :
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ just once
- A contains the left $\lfloor n / 2\rfloor$ points,
- \mathbb{B} contains the right $\lceil\mathrm{n} / 2\rceil$ points
- Recursively compute the convex hull of A
$\mathrm{T}(\mathrm{n} / 2)$

Recursively compute the convex hull of B

- Merge the two convex hulls

Convex Hull: Runtime

- Runtime Recurrence:

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}
$$

- Solves to $T(n)=\Theta(n \log n)$

Recurrence (Just like merge sort recurrence)

1. Divide: Divide set of points in half.
2. Conquer: Recursively compute convex hulls of 2 halves.
3. Combine: Linear-time merge. \# subproblems $\begin{aligned} & T(n)=2 T(n / 2)+O(n) \\ & \text { subproblem size }\end{aligned} \begin{aligned} & \text { work dividing } \\ & \text { and combining }\end{aligned}$

Recurrence (cont'd)

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n=1 \\
2 T(n / 2)+\Theta(n) \text { if } n>1 .
\end{array}\right.
$$

- How do we solve $T(n)$? I.e., how do we find out if it is $\mathrm{O}(\mathrm{n})$ or $\mathrm{O}\left(\mathrm{n}^{2}\right)$ or ...?

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

$$
T(n)
$$

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

The divide-and-conquer design paradigm

1. Divide the problem (instance) into subproblems.
a subproblems, each of size n / b
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions.

Runtime is $f(n)$

Master theorem

$$
T(n)=a T(n / b)+f(n)
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

$$
\begin{aligned}
& \text { CASE 1: } f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \\
& \quad \Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right) .
\end{aligned}
$$

CASE 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$
$\Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$.
CASE 3: $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ and $a f(n / b) \leq c f(n)$
$\Rightarrow T(n)=\Theta(f(n))$.
Convex hull: $a=2, b=2 \Rightarrow n^{\log b} a=n$
\Rightarrow CASE $2(k=0) \Rightarrow T(n)=\Theta(n \log n)$.

