CS 6463 Computational Geometry, Fall 10

$10 / 20 / 10$

4. Homework
 Due 11/10/10 before class

Always justify the runtime and the correctness of your algorithms, and try to make algorithms as efficient as possible.

1. Convex Hull of Intersections (15 points)

Let \mathcal{L} be a set of n lines in the plane, no two of which are parallel. Let S be the set of all $O\left(n^{2}\right)$ intersection points between any two lines in \mathcal{L}.
(a) Give an $O(n \log n)$ time algorithm to compute an axis-parallel rectangle that contains S.
(b) Give an $O(n \log n)$ time algorithm that computes $C H(S)$.

Hint: Your algorithms cannot compute all points in S explicitly. Sort all lines by slope, and prove that it is enough to consider only a certain subset of intersection points.
2. Star-Shaped Polygon (10 points)

A simple polygon P is called star-shaped, if it contains a point c such that for any point $p \in P$ the line segment $\overline{c p}$ is contained in P.
(a) Give an example of a star-shaped polygon that is not convex. What do you think is the reason for the name star-shaped?
(b) Develop an algorithm with expected linear runtime to decide whether a simple polygon is star-shaped.
(Hint: Half-plane intersection.)
3. Linear Separator (10 points)

Given m red points $R=\left\{r_{1}, \ldots, r_{m}\right\}$ and n blue points $B=\left\{b_{1}, \ldots, b_{n}\right\}$ in the plane. The linear separator problem is to decide whether there exists a line l such that all points of R are on one side of l and all points of B are on the other side. (You may assume appropriate general position, and may disregard points that lie exactly on the line.)
Use point-line duality to develop an algorithm for this problem which runs in expected linear time. (Hint: Linear Programming.)
4. Worst-case LP (5 points)

Suppose you are given a linear program consisting of n distinct half-planes and a linear objective function. Assume the linear program is bounded.
Is there always a way to order the half-planes such that the algorithm requires at least $\Omega\left(n^{2}\right)$ time? If so, explain how to construct such an ordering (given any fixed set of n half-planes). If not, give an example for arbitrary n in which all orderings lead to an $o\left(n^{2}\right)$ runtime.

