CS 6463 Computational Geometry, Fall 10

10/20/10

4. Homework Due 11/10/10 before class

Always justify the runtime and the correctness of your algorithms, and try to make algorithms as efficient as possible.

1. Convex Hull of Intersections (15 points)

Let \mathcal{L} be a set of *n* lines in the plane, no two of which are parallel. Let *S* be the set of all $O(n^2)$ intersection points between any two lines in \mathcal{L} .

- (a) Give an $O(n \log n)$ time algorithm to compute an axis-parallel rectangle that contains S.
- (b) Give an $O(n \log n)$ time algorithm that computes CH(S).

Hint: Your algorithms cannot compute all points in S explicitly. Sort all lines by slope, and prove that it is enough to consider only a certain subset of intersection points.

2. Star-Shaped Polygon (10 points)

A simple polygon P is called *star-shaped*, if it contains a point c such that for any point $p \in P$ the line segment \overline{cp} is contained in P.

- (a) Give an example of a star-shaped polygon that is not convex. What do you think is the reason for the name *star-shaped*?
- (b) Develop an algorithm with expected linear runtime to decide whether a simple polygon is star-shaped.
 (*Hint: Half-plane intersection.*)
- 3. Linear Separator (10 points)

Given *m* red points $R = \{r_1, \ldots, r_m\}$ and *n* blue points $B = \{b_1, \ldots, b_n\}$ in the plane. The **linear separator problem** is to decide whether there exists a line *l* such that all points of *R* are on one side of *l* and all points of *B* are on the other side. (You may assume appropriate general position, and may disregard points that lie exactly on the line.)

Use point-line duality to develop an algorithm for this problem which runs in expected linear time. *(Hint: Linear Programming.)*

4. Worst-case LP (5 points)

Suppose you are given a linear program consisting of n distinct half-planes and a linear objective function. Assume the linear program is bounded.

Is there always a way to order the half-planes such that the algorithm requires at least $\Omega(n^2)$ time? If so, explain how to construct such an ordering (given *any* fixed set of *n* half-planes). If not, give an example for arbitrary *n* in which all orderings lead to an $o(n^2)$ runtime.