CS 6463 Computational Geometry, Fall 10

$$
9 / 8 / 10
$$

1. Homework
 Due $\mathbf{9 / 2 2} / \mathbf{1 0}$ before class

Always justify the runtime and the correctness of your algorithms.

1. Convex Hulls (15 points)

This exercise is about computing the convex hull of objects other than points.
(a) Let S be a set of n line segments in the plane. Prove that the convex hull of S is exactly the same as the convex hull of the $2 n$ endpoints of the segments. Hint: It is enough to use the definition of the convex hull as the intersection of convex sets.
(b) Let \mathcal{P} be a non-convex polygon. Describe an algorithm that computes the convex hull of \mathcal{P} in $O(n)$ time. Hint: Use a variant of Graham's scan where the vertices are not treated in lexicographic order but in some other order.

2. Line Segment Intersection (5 points)

Let $a, b, c, d \in \mathbb{R}^{2}$. Show how to check whether the two line segments $\stackrel{\vdash-}{a b}$ and $\stackrel{\vdash-}{c d}$ intersect using a constant number of half-plane tests (or orientation tests).

3. Visible Segments (10 points)

Let S be a set of n disjoint line segments in the plane, and let p be a point not on any of the line segments of S. We wish to determine all line segments of S that P can see, i.e., all line segments of S that contain some point q so that the open segment $\stackrel{\perp-1}{p q}$ does not intersect any line segment of S.
Give an $O(n \log n)$ time algorithm for this problem that uses a rotating half-line with its endpoint at p.

4. Guarding the Boundary vs. the Interior (5 points)

Give an example of a polygon together with a placement of vertex guards, such that the whole polygon boundary is guarded but not the whole interior.

