CS 6463-004 Computational Geometry, Fall 06

$$
11 / 9 / 06
$$

5. Homework
 Due 11/30/06 before class

Always justify the runtime and the correctness of your algorithms, and try to make algorithms as efficient as possible.

1. Smallest Rectangle Queries (10 points)

Let P be a set of n points in the plane; you may assume that they are in general position. Devise a data structure of $O(n \log n)$ size to answer queries of the following form in $O\left(\log ^{2} n\right)$ time: Given a vertical line segment s and an integer k, find the smallest rectangle that has s as its left side and which contains at least k points. If no such rectangle exists then indicate this. (Assume that there exists a data structure based on range trees for answering orthogonal range counting queries in dimension d in $O\left(\log ^{d-1} n\right)$ time with $O\left(n \log ^{d-1} n\right)$ space.)
2. (5.9) Point Range Queries (10 points)

One can use the kd-tree and the range tree on a set S of points in the plane to determine whether a particular point (a, b) is in S by performing a range query with range $[a, a] \times[b, b]$.
(a) Prove that performing such a range query on a kd-tree takes time $O(\log n)$.
(b) What is the time bound for such a query on a range tree? Prove your answer.
3. Triangular Range Query (10 points)

Let P be a set of n points in the plane. Devise a data structure of $O(n)$ size to answer queries of the following form $\mathrm{n} O\left(n^{2 / 3}+k\right)$ time, where k is the number of points reported: Given a right triangle T in which one side is parallel to the x-axis, another side parallel to the y-axis, and the third side has a slope of -1 . Report all the points of P that lie within T. Hint: Transform this problem into an orthogonal range search problem in dimension 3.
4. Ray shooting (10 points)

Let S be a set of n disjoint line segments in the plane. Describe a data structure that can preprocess S in $O(n \log n)$ time and space such that the following ray shooting query can be answered in $O\left(\log n^{2}\right)$ time: Given a point $q=\left(q_{x}, q_{y}\right)$ report the first segment hit by a vertical ray starting at q and going vertically to infinity.
X. (5.13) Extra Credit (10 points)

This problem is for extra credit and not mandatory.
a) Let S be a set of n axis-parallel rectangles in the plane. We want to be able to report all rectangles in S that are completely contained in a query rectangle $\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$. Describe a data structure for this problem that uses $O\left(n \log ^{3} n\right)$ storage and has $O\left(\log ^{4} n+k\right)$ query time, where k is the number of reported answers. Hint: Transform the problem to an orthogonal range searching problem in some higher-dimensional space.
b) Same as in a), but this time S consists of n polygons in the plane with total complexity n.

