

Range Searching and Windowing Carola Wenk

Orthogonal range searching

Input: *n* points in *d* dimensions

• E.g., representing a database of *n* records each with *d* numeric fields

Query: Axis-aligned *box* (in 2D, a rectangle)

- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.

Orthogonal range searching

Input: *n* points in *d* dimensions

Query: Axis-aligned *box* (in 2D, a rectangle)

• Report on the points inside the box

Goal: Preprocess points into a data structure to support fast queries

- Primary goal: *Static data structure*
- In 1D, we will also obtain a dynamic data structure supporting insert and delete

1D range searching

In 1D, the query is an interval:

First solution:

- Sort the points and store them in an array
 - Solve query by binary search on endpoints.
 - Obtain a static structure that can list
 - *k* answers in a query in $O(k + \log n)$ time.
- **Goal:** Obtain a dynamic structure that can list *k* answers in a query in $O(k + \log n)$ time.

1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
 - New organization principle: Store points in the *leaves* of the tree.
 - Internal nodes store copies of the leaves to satisfy binary search property:
 - Node *x* stores in *key*[*x*] the maximum key of any leaf in the left subtree of *x*.

 $\frac{key[x]}{2}$ is the maximum key of any leaf in the left subtree of x. CS5633 Analysis of Algorithms 6

key[x] is the maximum key of any leaf in the left subtree of x. 2/28/12 7

CS5633 Analysis of Algorithms

Pseudocode, part 1: Find the split node

1D-RANGE-QUERY(T, [x₁, x₂])
w ← root[T]
while w is not a leaf and (x₂ ≤ key[w] or key[w] < x₁)
do if x₂ ≤ key[w]
then w ← left[w]
else w ← right[w]
// w is now the split node
[traverse left and right from w and report relevant subtrees]

Pseudocode, part 2: Traverse left and right from split node

1D-RANGE-QUERY $(T, [x_1, x_2])$ [find the split node] // w is now the split node if w is a leaf **then** output the leaf w if $x_1 \le key[w] \le x_2$ else $v \leftarrow left[w]$ // Left traversal while *v* is not a leaf **do if** $x_1 \leq key[v]$ then output the subtree rooted at *right*[v] $v \leftarrow left[v]$ else $v \leftarrow right[v]$ output the leaf v if $x_1 \leq key[v] \leq x_2$ [symmetrically for right traversal]

Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented by $O(\log n)$ subtrees found in $O(\log n)$ time. Thus:

- Can test for points in interval in $O(\log n)$ time.
- Can report all k points in interval in $O(k + \log n)$ time.
- Can count points in interval in $O(\log n)$ time

Space: O(n)**Preprocessing time:** O(*n* log *n*)

2D range trees

2D range trees

Store a *primary* 1D range tree for all the points based on *x*-coordinate.

Thus in $O(\log n)$ time we can find $O(\log n)$ subtrees representing the points with proper *x*-coordinate. How to restrict to points with proper *y*-coordinate?

CS5633 Analysis of Algorithms

2D range trees

Idea: In primary 1D range tree of *x*-coordinate, <u>every</u> node stores a *secondary* 1D range tree based on *y*-coordinate for all points in the subtree of the node. Recursively search within each.

2D range tree example

Secondary trees

Analysis of 2D range trees

Query time: In $O(\log^2 n) = O((\log n)^2)$ time, we can represent answer to range query by $O(\log^2 n)$ subtrees. Total cost for reporting *k* points: $O(k + (\log n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n \log n)$.

Preprocessing time: O(n log n)

d-dimensional range trees

Each node of the secondary

y-structure stores a tertiary

z-structure representing the points in the subtree

rooted at the node, etc. Save one log factor using fractional cascading

Query time: $O(k + \log^{d} n)$ to report k points. Space: $O(n \log^{d-1} n)$ Preprocessing time: $O(n \log^{d-1} n)$

Search in Subsets

- **Given:** Two sorted arrays A_1 and A, with $A_1 \subseteq A$ A query interval [l,r]
- **Task:** Report all elements e in A_1 and A with $l \le e \le r$
- Idea: Add pointers from A to A_1 : \rightarrow For each $a \in A$ add a pointer to the smallest element $b \in A_1$ with $b \ge a$

Query: Find $l \in A$, follow pointer to A_1 . Both in A and A_1 sequentially output all elements in [l,r].

Runtime: $O((\log n + k) + (1 + k)) = O(\log n + k))$

2/28/12

CS5633 Analysis of Algorithms

Search in Subsets (cont.)

Given: Three sorted arrays $A_1 A_2$, and A_3 , with $A_1 \subseteq A$ and $A_2 \subseteq A$

Runtime: $O((\log n + k) + (1+k) + (1+k)) = O(\log n + k))$

Query: [12,67] x [19,70]

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing: $O(n \log n)$ Query: $O(\log n + k)$

2/28/12

Query: [12,67] x [19,70]

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing: $O(n \log n)$ Query: $O(\log n + k)$

2/28/12

Query: [12,67] x [19,70]

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing: $O(n \log n)$ Query: $O(\log n + k)$

2/28/12

Query: [12,67] x [19,70]

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing: $O(n \log n)$ Query: $O(\log n + k)$

d-dimensional range trees

Query time: $O(k + \log^{d-1} n)$ to report k points, uses fractional cascading in the last dimension Space: $O(n \log^{d-1} n)$ Preprocessing time: $O(n \log^{d-1} n)$

Best data structure to date: Query time: $O(k + \log^{d-1} n)$ to report k points. Space: $O(n (\log n / \log \log n)^{d-1})$ Preprocessing time: $O(n \log^{d-1} n)$