
CS 5633 -- Spring 2012

Range Searching and Windowing
Carola Wenk

12/28/12 CS5633 Analysis of Algorithms

Orthogonal range searchingg g g

Input: n points in d dimensionsp p
• E.g., representing a database of n records

each with d numeric fields
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the box:Report on the points inside the box:
• Are there any points?
• How many are there?How many are there?
• List the points.

22/28/12 CS5633 Analysis of Algorithms

Orthogonal range searchingg g g

Input: n points in d dimensionsp p
Query: Axis-aligned box (in 2D, a rectangle)

• Report on the points inside the boxReport on the points inside the box
Goal: Preprocess points into a data structure

to support fast queriesto support fast queries
• Primary goal: Static data structure
• In 1D we will also obtain a• In 1D, we will also obtain a
dynamic data structure
supporting insert and delete

32/28/12 CS5633 Analysis of Algorithms

supporting insert and delete

1D range searchingg g
In 1D, the query is an interval:

First solution:First solution:
• Sort the points and store them in an array

• Solve query by binary search on endpoints• Solve query by binary search on endpoints.
• Obtain a static structure that can list
k answers in a query in O(k + log n) timek answers in a query in O(k + log n) time.

Goal: Obtain a dynamic structure that can list
k i i O(k + l) ti

42/28/12 CS5633 Analysis of Algorithms

k answers in a query in O(k + log n) time.

1D range searchingg g
In 1D, the query is an interval:

New solution that extends to higher dimensions:New solution that extends to higher dimensions:
• Balanced binary search tree

• New organization principle:New organization principle:
Store points in the leaves of the tree.

• Internal nodes store copies of the leavesInternal nodes store copies of the leaves
to satisfy binary search property:

• Node x stores in key[x] the maximum

52/28/12 CS5633 Analysis of Algorithms

Node x stores in key[x] the maximum
key of any leaf in the left subtree of x.

Example of a 1D range treep g

1 17 43

6 8 12 14 26 35 41 42 59 61

62/28/12 CS5633 Analysis of Algorithms

key[x] is the maximum key of any leaf in the left subtree of x.

Example of a 1D range treep g
17

x

428
≤ x > x

1 14 35 43

121 17 436 26 41 59

6 8 12 14 26 35 41 42 59 61

72/28/12 CS5633 Analysis of Algorithms

key[x] is the maximum key of any leaf in the left subtree of x.

Example of a 1D range queryp g q y
17

x

428
≤ x > x

141 14 35 43

12 17 261 436 41 5912 17 26

8 12 14 26 35 416 42 59 618 12 14 26 35 41

82/28/12 CS5633 Analysis of Algorithms

RANGE-QUERY([7, 41])

General 1D range queryg q y
root

split node

92/28/12 CS5633 Analysis of Algorithms

Pseudocode, part 1:
Find the split nodeFind the split node

1D-RANGE-QUERY(T, [x1, x2])
w ← root[T]w ← root[T]
while w is not a leaf and (x2 ≤ key[w] or key[w] < x1)

do if x2 ≤ key[w]
l f []then w ← left[w]

else w ← right[w]
// w is now the split nodep
[traverse left and right from w and report relevant subtrees]

102/28/12 CS5633 Analysis of Algorithms

Pseudocode, part 2: Traverse
left and right from split nodeleft and right from split node

1D-RANGE-QUERY(T, [x1, x2])
[find the split node][find the split node]
// w is now the split node
if w is a leaf

h l f if k []then output the leaf w if x1 ≤ key[w] ≤ x2
else v ← left[w] // Left traversal

while v is not a leaf
do if x1 ≤ key[v]

then output the subtree rooted at right[v]
v ← left[v]v ← left[v]

else v ← right[v]
output the leaf v if x1 ≤ key[v] ≤ x2
[i ll f i h l]

w

112/28/12 CS5633 Analysis of Algorithms

[symmetrically for right traversal]

Analysis of 1D-RANGE-QUERYy Q
Query time: Answer to range query represented
b O(log) s btrees fo nd in O(log) timeby O(log n) subtrees found in O(log n) time.
Thus:

• Can test for points in inter al in O(log) time• Can test for points in interval in O(log n) time.
• Can report all k points in interval in

O(k + log n) timeO(k + log n) time.
• Can count points in interval in

O(log n) timeO(log n) time
Space: O(n)

122/28/12 CS5633 Analysis of Algorithms

Preprocessing time: O(n log n)

2D range treesg

132/28/12 CS5633 Analysis of Algorithms

2D range trees
Store a primary 1D range tree for all the points
based on coordinate

g

based on x-coordinate.
Thus in O(log n) time we can find O(log n) subtrees

ti th i t ith di trepresenting the points with proper x-coordinate.
How to restrict to points with proper y-coordinate?

142/28/12 CS5633 Analysis of Algorithms

2D range treesg
Idea: In primary 1D range tree of x-coordinate,
e er node stores a d 1D range treeevery node stores a secondary 1D range tree
based on y-coordinate for all points in the subtree
of the node Rec rsi el search ithin eachof the node. Recursively search within each.

152/28/12 CS5633 Analysis of Algorithms

2D range tree exampleg p

5/8 5/8

Secondary trees
5/8

2/7

6/6

3/5

7

5

6

3

5/8

2/7

3/5

7

5
6/6

3

2/7

1

5/8

3/5

56/6

2

9/3

7/2

1/1

2

1
1/1

1 9/3

7/2

2

1/1

7/2

2 7

5

1/1 2/7 3/5 5/8 6/6 7/2

9/31 3 6

Primary tree
162/28/12 CS5633 Analysis of Algorithms

Primary tree

Analysis of 2D range treesy g
Query time: In O(log2 n) = O((log n)2) time, we can

t t b O(l 2) btrepresent answer to range query by O(log2 n) subtrees.
Total cost for reporting k points: O(k + (log n)2).

Space: The secondary trees at each level of the
primary tree together store a copy of the pointsprimary tree together store a copy of the points.
Also, each point is present in each secondary
tree along the path from the leaf to the root

P i ti O(l)

tree along the path from the leaf to the root.
Either way, we obtain that the space is O(n log n).

172/28/12 CS5633 Analysis of Algorithms

Preprocessing time: O(n log n)

d-dimensional range treesg
Each node of the secondary

iy-structure stores a tertiary
z-structure representing the points in the subtree

d h drooted at the node, etc. Save one log factor using
fractional cascading

Query time: O(k + logd n) to report k points.
Space: O(n logd – 1 n)
P i i O(l d 1)Preprocessing time: O(n logd – 1 n)

182/28/12 CS5633 Analysis of Algorithms

Search in Subsets
Given: Two sorted arrays A1 and A, with A1⊆A

A query interval [l,r]q y [,]
Task: Report all elements e in A1 and A with l ≤ e ≤ r
Idea: Add pointers from A to A1:

→ For each a∈A add a pointer to the→ For each a∈A add a pointer to the
smallest element b∈ A1 with b≥a

Query: Find l∈A, follow pointer to A1. Both in A and A1Q y , p 1 1
sequentially output all elements in [l,r].

3 10 19 23 30 37 59 62 80 90Query: A

10 19 30 62 80
[15,40]

A1

192/28/12 CS5633 Analysis of Algorithms

Runtime: O((log n + k) + (1 + k)) = O(log n + k))

Search in Subsets (cont.)()
Given: Three sorted arrays A1, A2, and A,

with A1⊆A and A2⊆A1 ⊆ 2⊆

3 10 19 23 30 37 59 62 80 90Query:
[15 40]

A

10 19 30 62 80
[15,40]

A1
3 23 37 62 90A2

R ti O((l k) (1 k) (1 k)) O(l k))Runtime: O((log n + k) + (1+k) + (1+k)) = O(log n + k))

Range trees:

Y1∪Y2

202/28/12 CS5633 Analysis of Algorithms
X

Y1 Y2

Fractional Cascading:
Layered Range Tree

Query:
[12,67] x [19,70]Layered Range Tree

R l 2D tReplace 2D range tree
with a layered range
tree, using sorted , g
arrays and pointers
instead of the
secondary range treessecondary range trees.

Preprocessing: p g
O(n log n)

Query:
O(log n + k)

212/28/12 CS 6463 AT: Computational Geometry

O(log n + k)

Fractional Cascading:
Layered Range Tree

Query:
[12,67] x [19,70]Layered Range Tree

R l 2D tReplace 2D range tree
with a layered range
tree, using sorted , g
arrays and pointers
instead of the
secondary range treessecondary range trees.

Preprocessing: p g
O(n log n)

Query:
O(log n + k)

222/28/12 CS 6463 AT: Computational Geometry

O(log n + k)

Fractional Cascading:
Layered Range Tree

Query:
[12,67] x [19,70]Layered Range Tree

R l 2D tReplace 2D range tree
with a layered range
tree, using sorted , g
arrays and pointers
instead of the
secondary range treessecondary range trees.

Preprocessing: p g
O(n log n)

Query:
O(log n + k)

232/28/12 CS5633 Analysis of Algorithms

O(log n + k)

Fractional Cascading:
Layered Range Tree

Query:
[12,67] x [19,70]Layered Range Tree

R l 2D tReplace 2D range tree
with a layered range
tree, using sorted , g
arrays and pointers
instead of the
secondary range treessecondary range trees.

Preprocessing: p g
O(n log n)

Query:
O(log n + k)

242/28/12 CS 6463 AT: Computational Geometry

O(log n + k)

d-dimensional range treesg

Query time: O(k + logd-1 n) to report k points,Q y (g) p p ,
uses fractional cascading in the
last dimension

Space: O(n logd – 1 n)
Preprocessing time: O(n logd – 1 n)

Best data structure to date:
Query time: O(k + logd – 1 n) to report k points.
Space: O(n (log n / log log n)d – 1)
P i ti O(l d 1)

252/28/12 CS5633 Analysis of Algorithms

Preprocessing time: O(n logd – 1 n)

